Nav: Home

Doubly-excited electrons reach new energy states

November 13, 2018

Positrons are short-lived subatomic particle with the same mass as electrons and a positive charge. They are used in medicine, e.g. in positron emission tomography (PET), a diagnostic imaging method for metabolic disorders. Positrons also exist as negatively charged ions, called positronium ions (Ps-), which are essentially a three-particle system consisting of two electrons bound to a positron.

Now, commercially available lasers are capable of producing photons that carry enough energy to bring the electrons of negatively charge ions, like Ps?, to doubly-excited states, referred to as D-wave resonance. Positronium ions are, however, very difficult to observe because they are unstable and often disappear before physicists get a chance to analyse them.

Sabyasachi Kar from the Harbin Institute of Technology, China, and Yew Kam Ho from the Academia Sinica, Taipei, Taiwan, have now characterised these higher energy levels reached by electrons in resonance in these three-particle systems, which are too complex to be described using simple equations. This theoretical model, recently published in EPJ D, is intended to offer guidance for experimentalists interested in observing these resonant structures. This model of a three-particle system can be adapted to problems in atomic physics, nuclear physics, and semiconductor quantum dots, as well as antimatter physics and cosmology.

In this study, the authors first test the validity of their theoretical approach by showing that the resonance parameters for negatively charged hydrogen ions (H-)--modelled as a three-particle system made up of two electrons and one proton--are in agreement with previous studies. The authors then calculate, for the first time, new resonance states associated with the positronium ion (Ps-) in higher energy regions by modelling it as a three-particle system. In turn, they elaborate on seven modes of resonance for the electrons that have never before been reported.
-end-
References: S. Karand Y. K. Ho (2018), Two-photon double-electron D-wave resonant excitation in the positronium negative ion, European Physical Journal D 72: 193, DOI: 10.1140/epjd/e2018-90250-4

Springer

Related Electrons Articles:

Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
Tying down electrons with nanoribbons
Nanoribbons are promising topological materials displaying novel electronic properties. UC Berkeley chemists and physicists have found a way to join two different types of nanoribbon to create a topological insulator that confines single electrons to the junction between them.
More Electrons News and Electrons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.