Microorganisms help production

November 13, 2018

Oil is still the most economically attractive resource for fuels and basic chemicals that can be used to manufacture everyday products such as plastic bottles and detergent. New biotechnological processes aim to simplify the use of renewable biomass as an alternative to the fossil raw material and make it more cost-effective. Researchers at KIT are focusing on plant biomass such as wood and straw which is not used as food or feed. These and other innovation stories are presented in KIT's current NEULAND magazine.

Oil is profitable but its use is detrimental to the climate and environment. Besides, supplies of the fossil raw material are dwindling. Processes applied so far to win basic chemicals such as ethanol from renewable materials are expensive. What is more, they use plants such as maize, sugar beet and rape which also serve as food for humans and animals. ''To achieve sustainable and environmentally friendly energy and raw material supply, we need to develop innovative technologies which make the use of renewable biomass also attractive from an economic point of view,'' says Professor Christoph Syldatk, Head of the Institute of Process Engineering in Life Sciences II / Technical Biology at KIT. His research group is examining how raw materials that do not compete with food or feed can be processed biotechnologically - for example straw, green waste and sawdust. These second-generation, non-edible, bio-based raw materials consist to a large extent of lignocellulose which forms the cell walls of woody plants. To be able to use lignocellulose, however, it first needs to be broken down into its components (fractions). This process has so far been time-consuming and expensive. To reduce production costs and establish lignocellulose as a raw material, researchers at KIT are examining, among other things, how - on the basis of lignocellulose fractions - new types of biosurfactants can be produced using microbial or enzymatic synthesis.

The aim is to convert the woody biomass into basic components for the production of chemicals and materials such as bioplastics. Bacteria, yeasts and molds are among the microorganisms, the metabolism of which is used by researchers in the lab for such innovative product syntheses and chemical changes. Some industry partners are already implementing KIT's application-oriented research on a large scale. Products can be manufactured using a bio-based process. Their molecules and properties are identical to those of petrochemical components. ''On top of that, there are more options to modify the molecular structure,''explains Syldatk. For example, plastics can be equipped with a higher melting point or greater gas permeability, and surfactants with modified foam properties. ''We are trying to play around with bacteria in fundamental research to find out which functions the respective structures have, and if possible to produce tailor-made compounds,'' says the biotechnologist.

Process optimization is also involved in the use of microorganisms for further processing of synthesis gases which are produced by pyrolysis from straw or wood waste in the bioliq pilot plant at KIT. ''A major advantage of using synthesis gas is that it provides the same starting conditions, no matter what type of biomass was used as a raw material,'' says the researcher. Flue gas can now also be converted with the help of microorganisms, ''because they tolerate sulfur compounds or even use them for their metabolism. For chemical processing, the combustion gases would first need to be cleaned from these toxic compounds,'' explains Syldatk. In its bio-economy research program, the state of Baden-Württemberg supports the KIT-driven development of innovative methods for the microbial use of lignocellulose.
-end-
More information on this and KIT's other innovation topics can be found in NEULAND magazine:

http://kit-neuland.de/de/magazin/potenziale/auf-dem-holzweg-in-die-zukunft

http://kit-neuland.de/de/magazin/das-magazin-neuland

Video interview and lab tour with Christoph Syldatk:

https://www.youtube.com/watch?v=Sh1l7JljJpU

More about Christoph Syldatk's research:

https://tebi.blt.kit.edu/forschung.php

In the current publication in the ''Frontiers in Chemistry'' journal, the research group is presenting the first eco-friendly enzymatic synthesis of economically important fatty acid sugar esters on the basis of lignocellulosic biomass:

https://www.frontiersin.org/articles/10.3389/fchem.2018.00421/full

Press contact: Regina Link, Redakteurin/Pressereferentin,Tel.: +49 721 608-21158, regina.link@kit.edu">regina.link@kit.edu

Being ''The Research University in the Helmholtz Association'', KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,500 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

Karlsruher Institut für Technologie (KIT)

Related Biomass Articles from Brightsurf:

Bound for the EU, American-made biomass checks the right boxes
A first-of-its-kind study published in the journal Scientific Reports finds that wood produced in the southeastern United States for the EU's renewable energy needs has a net positive effect on US forests--but that future industry expansion could warrant more research.

The highest heat-resistant plastic ever is developed from biomass
The use of biomass-derived plastics is one of the prime concerns to establish a sustainable society, which is incorporated as one of the Sustainable Development Goals.

Laser technology measures biomass in world's largest trees
Laser technology has been used to measure the volume and biomass of giant Californian redwood trees for the first time, records a new study by UCL researchers.

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.

Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.

Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.

Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.

Read More: Biomass News and Biomass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.