Nav: Home

Microorganisms help production

November 13, 2018

Oil is still the most economically attractive resource for fuels and basic chemicals that can be used to manufacture everyday products such as plastic bottles and detergent. New biotechnological processes aim to simplify the use of renewable biomass as an alternative to the fossil raw material and make it more cost-effective. Researchers at KIT are focusing on plant biomass such as wood and straw which is not used as food or feed. These and other innovation stories are presented in KIT's current NEULAND magazine.

Oil is profitable but its use is detrimental to the climate and environment. Besides, supplies of the fossil raw material are dwindling. Processes applied so far to win basic chemicals such as ethanol from renewable materials are expensive. What is more, they use plants such as maize, sugar beet and rape which also serve as food for humans and animals. ''To achieve sustainable and environmentally friendly energy and raw material supply, we need to develop innovative technologies which make the use of renewable biomass also attractive from an economic point of view,'' says Professor Christoph Syldatk, Head of the Institute of Process Engineering in Life Sciences II / Technical Biology at KIT. His research group is examining how raw materials that do not compete with food or feed can be processed biotechnologically - for example straw, green waste and sawdust. These second-generation, non-edible, bio-based raw materials consist to a large extent of lignocellulose which forms the cell walls of woody plants. To be able to use lignocellulose, however, it first needs to be broken down into its components (fractions). This process has so far been time-consuming and expensive. To reduce production costs and establish lignocellulose as a raw material, researchers at KIT are examining, among other things, how - on the basis of lignocellulose fractions - new types of biosurfactants can be produced using microbial or enzymatic synthesis.

The aim is to convert the woody biomass into basic components for the production of chemicals and materials such as bioplastics. Bacteria, yeasts and molds are among the microorganisms, the metabolism of which is used by researchers in the lab for such innovative product syntheses and chemical changes. Some industry partners are already implementing KIT's application-oriented research on a large scale. Products can be manufactured using a bio-based process. Their molecules and properties are identical to those of petrochemical components. ''On top of that, there are more options to modify the molecular structure,''explains Syldatk. For example, plastics can be equipped with a higher melting point or greater gas permeability, and surfactants with modified foam properties. ''We are trying to play around with bacteria in fundamental research to find out which functions the respective structures have, and if possible to produce tailor-made compounds,'' says the biotechnologist.

Process optimization is also involved in the use of microorganisms for further processing of synthesis gases which are produced by pyrolysis from straw or wood waste in the bioliq pilot plant at KIT. ''A major advantage of using synthesis gas is that it provides the same starting conditions, no matter what type of biomass was used as a raw material,'' says the researcher. Flue gas can now also be converted with the help of microorganisms, ''because they tolerate sulfur compounds or even use them for their metabolism. For chemical processing, the combustion gases would first need to be cleaned from these toxic compounds,'' explains Syldatk. In its bio-economy research program, the state of Baden-Württemberg supports the KIT-driven development of innovative methods for the microbial use of lignocellulose.
-end-
More information on this and KIT's other innovation topics can be found in NEULAND magazine:

http://kit-neuland.de/de/magazin/potenziale/auf-dem-holzweg-in-die-zukunft

http://kit-neuland.de/de/magazin/das-magazin-neuland

Video interview and lab tour with Christoph Syldatk:

https://www.youtube.com/watch?v=Sh1l7JljJpU

More about Christoph Syldatk's research:

https://tebi.blt.kit.edu/forschung.php

In the current publication in the ''Frontiers in Chemistry'' journal, the research group is presenting the first eco-friendly enzymatic synthesis of economically important fatty acid sugar esters on the basis of lignocellulosic biomass:

https://www.frontiersin.org/articles/10.3389/fchem.2018.00421/full

Press contact: Regina Link, Redakteurin/Pressereferentin,Tel.: +49 721 608-21158, regina.link@kit.edu">regina.link@kit.edu

Being ''The Research University in the Helmholtz Association'', KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,500 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

Karlsruher Institut für Technologie (KIT)

Related Biomass Articles:

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.
Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.
Biotech breakthrough turns waste biomass into high value chemicals
A move towards a more sustainable bio-based economy has been given a new boost by researchers who have been able to simplify a process to transform waste materials into high value chemicals.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Whole-tree harvesting could boost biomass production
Making the shift to renewable energy sources requires biomass, too.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Symbiotic upcycling: Turning 'low value' compounds into biomass
Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass.
More Biomass News and Biomass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.