Nav: Home

Immunity connects gut bacteria and aging

November 13, 2018

There is no doubt that gut bacteria have become one of the most important focuses of biological and medical research today. Over the years, we have learned that the different populations of bacteria that inhabit the gut can often have significant effects on various functions of the body, including the immune system.

The different populations of gut bacteria, are sometimes called "commensal", and exist in virtually all animals, living under a certain functional balance. When this balance is disrupted - for example, because of disease or medication - this gives rise to a condition known as "commensal dysbiosis", which is associated with a number of pathologies and even a decreased lifespan. Despite this knowledge, little is known as how exactly the gut bacteria affect general health and vice versa.

Now, Igor Iatsenko, a scientist from the lab of Bruno Lemaitre at EPFL's Global Health Institute has discovered a mechanism by which problems of the immune system can cause commensal dysbiosis that in turn promotes age-related pathologies.

The team used the fruit-fly Drosophila melanogaster, which is often used to study the biology of gut bacteria. Because they wanted to explore the interplay between gut bacteria and the immune system, they focused on a receptor protein called "peptidoglycan recognition protein SD" (PGRP-SD). This protein belongs to a class of pattern-recognition receptors, and in 2016, Igor Iatsenko already showed that PGRP-SD detects foreign bacterial pathogens and turns the fly's immune system against them.

In the present study, the scientists turned off the gene for PGRP-SD, thus creating flies with disrupted immune system. The mutant flies proved to have shorter lifespans than normal ones, and when the researchers examined them, they found that they also had an abnormally high number of the gut bacterium Lactobacillus plantarum, a widespread species of bacteria that produce lactic acid.

Looking into the biological impact of this, the scientists found that the bacteria also produced an excessive amount of lactic acid. This, in turn, triggered the generation of reactive oxygen species, which cause damage to cells and contribute to the aging of tissues. In contrast, when the scientists increased the production of PGRP-SD, they found that it prevented commensal dysbiosis, and even extended the lifespan of the flies.

"Here we have a metabolic interplay between the commensal bacteria and the host," says Bruno Lemaitre. "Lactic acid, a metabolite produced by the bacterium Lactobacillus plantarum is incorporated and processed in the fly intestine, with the side-effect of producing reactive oxygen species that promote epithelial damage." The researchers speculate that similar mechanisms are taking place in the mammalian intestine.

"Our study identifies a specific microbiota member and its metabolite that can influence aging in the host organism," says Igor Iatsenko. "There are definitely many more examples like this, and a better understanding of host-microbiota metabolic interactions during aging is needed in order to develop strategies against age-associated pathologies."
-end-
Reference

Igor Iatsenko, Jean-Philippe Boquete, Bruno Lemaitre. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase Nox and shortens Drosophila lifespan. Immunity 13 November 2018. DOI: 10.1016/j.immuni.2018.09.017

Ecole Polytechnique Fédérale de Lausanne

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.