Nav: Home

UTA researchers find cheaper, less energy-intensive way to purify ethylene

November 13, 2018

Researchers at The University of Texas at Arlington have filed a provisional patent application on a new copper compound that can be used to purify ethylene for use as a raw material in the production of plastics such as polyethylene or PVC, as well as other industrial compounds.

Ethylene is produced from crude oil but is usually obtained as a mixture containing ethane. Manufacturing processes using ethylene usually require pure, or 99.9 percent, ethylene feed-stock.

"Existing technologies to separate ethylene and ethane use enormous amounts of energy and require high levels of capital investment," said Rasika Dias, UTA distinguished university professor of chemistry and biochemistry.

"Our new technology uses a copper compound that can selectively absorb ethylene in the solid state, leaving ethane out, with the minimum amount of energy release," he added.

Ethylene absorption by the newly discovered copper complex is easily reversible, so the absorbed ethylene can then be released and recovered using mild temperature or pressure changes, resulting in the regeneration of the starting copper complex, which can be reused multiple times.

"As a result, our new technology is both highly sustainable and very energy-efficient, and could represent a real breakthrough in the separation of olefins like ethylene and propylene from paraffins, which currently accounts for 0.3 percent of global energy use, roughly equivalent to Singapore's annual energy consumption," Dias said.

The researchers have reported their new technology in the international journal Angewandte Chemie, in the article "Low net heat of adsorption of ethylene achieved by major solid-state structural rearrangement of a discrete copper complex." The paper describes how the release of a very low level of heat during the absorption process is the result of the accompanying structural rearrangement of the copper complex upon exposure to ethylene.

Fred MacDonnell, UTA chair of chemistry and biochemistry, congratulated Dias on the development of this new technology.

"Dr. Dias and his colleagues have taken on the challenge of improving one of the most relevant chemical separations, and one needed for multiple industrial processes and the production of products used throughout our daily lives," MacDonnell said. "This could have very important implications for the costs associated with producing these goods, and also radically improve the environmental impact by reducing the heat emitted to the atmosphere."
-end-


University of Texas at Arlington

Related Chemistry Articles:

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
Biomimetic chemistry: Carbohydrate capture
LMU chemists have designed and synthesized a helical molecule that specifically recognizes and binds to a disaccharide consisting of two five-carbon sugar units.
Reining in soil's nitrogen chemistry
The compound urea is currently the most popular nitrogen soil fertilizer.
Taking a closer look at 'electrifying' chemistry
With the increasing availability of electrical energy from renewable sources, it will be possible in the future to drive many chemical processes using an electric current.
The changing chemistry of the Amazonian atmosphere
Researchers have been debating whether nitrogen oxides (NOx) can affect levels of OH radicals in a pristine atmosphere but quantifying that relationship has been difficult.
The chemistry of Hollywood bloodbaths (video)
Fake blood is a staple of the Halloween horror film experience, but there's no one recipe to suit every filmmaker's needs.
More Chemistry News and Chemistry Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.