The smell of old books could help preserve them

November 13, 2019

Old books give off a complex mélange of odors, ranging from pleasant (almonds, caramel and chocolate) to nasty (formaldehyde, old clothes and trash). Detecting early signs of paper degradation could help guide preservation efforts, but most techniques destroy the very paper historians want to save. Now, researchers reporting in ACS Sensors have developed an electronic nose that can non-destructively sniff out odors emitted by books of different paper compositions, conditions and ages.

Paper is made primarily of cellulose, along with other plant components, and additives that improve the paper's properties. Cellulose is resistant to ageing, but the other paper components are much more vulnerable to degradation by heat, humidity and UV light. Before 1845, paper was made mainly from cotton and linen rags, which were relatively pure forms of cellulose and therefore quite stable. Then, in 1845, inventors developed a process to make paper from wood-pulp fibers. This paper is less durable than that made from cotton, but wood is cheaper and more readily available. In 1980, the advent of acid-free paper was a boon to preservationists because it degrades much more slowly than acidic wood-pulp paper. Marta Veríssimo, M. Teresa Gomes and colleagues wanted to develop an electronic nose that could non-destructively detect early signs of paper degradation from the volatile organic compounds (VOCs) books emit.

The researchers collected 19 books published from 1567 to 2016. They classified the books by time period, paper composition, color and visible state. Then, the researchers collected VOCs released from the books and detected the gases with an electronic nose containing six sensors that selectively bound different VOCs. The electronic nose clearly distinguished between paper from cotton or linen rags and paper from wood, as well as among books from three different time periods. Unexpectedly, some books published after 1990 still contained acidic paper, which the sensor discriminated from books with acid-free paper. And finally, the device sniffed out yellowing books, and new and used books from the same time period. The sensitive new method could help identify books in need of preservation, as well as help protect books from VOCs emitted by their neighbors on a shelf.
The authors acknowledge funding from the Portuguese Foundation for Science and Technology.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a nonprofit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us on Twitter | Facebook

American Chemical Society

Related Cotton Articles from Brightsurf:

NTU scientists report plastic could be 'eco-friendlier' than paper &cotton in Singapore
Scientists from Nanyang Technological University, Singapore (NTU Singapore) have modelled the cradle-to-grave environmental impact of using different types of shopping bags and report that in cities like Singapore, single-use plastic bags (made from high-density polyethylene plastic) have a lower environmental footprint than single-use paper and multi-use cotton bags.

Research recommends integrated approaches to managing reniform nematodes in cotton
While there are many pests affecting cotton, the reniform nematode is one the most damaging, with the ability to cause annual losses of approximately $33 million within the Mid-Southern United States.

Nematode has potential to reduce cotton yields by 50 percent
The reniform nematode is one of the most commonly found pests of cotton, with the ability to cause severe economic damage.

HudsonAlpha plant genomics researchers surprised by cotton genome
Plant genomics researchers at HudsonAlpha Institute for Biotechnology announce the surprising results of a cotton sequencing study led by Jane Grimwood, Ph.D., and Jeremy Schmutz, who co-direct the HudsonAlpha Genome Sequencing Center (HGSC).

Picking up threads of cotton genomics
In Nature Genetics, a multi-institutional team including researchers at the US Department of Energy (DOE) Joint Genome Institute (JGI) has now sequenced and assembled the genomes of the five major cotton lineages.

Neither surgical nor cotton masks effectively filter SARS COV-2
Both surgical and cotton masks were found to be ineffective for preventing the dissemination of SARS-CoV-2 from the coughs of patients with COVID-19.

Fungi found in cotton can decrease root knot nematode galling
Gregory Sword and colleagues at Texas A&M University inoculated cotton seeds with a diverse array of fungal isolates and tested the resulting seedlings in greenhouse trials for susceptibility to gall formation by root knot nematodes.

Why does your cotton towel get stiff after natural drying?
The remaining 'bound water' on cotton surfaces cross-link single fibers of cotton, causing hardening after natural drying, according to a new study conducted by Kao Corporation and Hokkaido University.

Long-term analysis shows GM cotton no match for insects in India
In India, Bt cotton is the most widely planted cotton crop by acreage, and it is hugely controversial.

What if mysterious 'cotton candy' planets actually sport rings?
Some of the extremely low-density, 'cotton candy like' exoplanets called super-puffs may actually have rings, according to new research published in The Astronomical Journal by Carnegie's Anthony Piro and Caltech's Shreyas Vissapragada.

Read More: Cotton News and Cotton Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to