Nav: Home

Turning (more) fat and sewage into natural gas

November 13, 2019

North Carolina State University researchers have developed what is, to date, the most efficient means of converting sewage sludge and restaurant grease into methane.

After treating sewage, wastewater treatment plants are left with solid sludge, called biosolids. For years, utilities have treated biosolids with microbes that produce methane. In recent years, utilities have been adding grease interceptor waste (GIW) into the mix.

Grease interceptors are used to trap fat, oil and grease from food service establishments so that they don't clog up sewers. By adding GIW in with their biosolids, utilities can produce more methane, making the entire operation more efficient. But there are challenges.

"Turning biosolids and GIW into a renewable source of clean energy is a laudable goal," says Francis de los Reyes, a professor of civil, construction and environmental engineering at NC State and lead author of a paper on the work. "But if you add too much GIW into the anaerobic digester they use to treat biosolids, the system goes haywire - and methane production plummets.

"Our goal with this work was to figure out the best balance of biosolids and GIW for maximizing methane production. And we were able to make significant advances."

The researchers determined that increasing the amount of GIW they fed into the digester a little at a time allowed them to increase the amount of GIW in the mix to the point where it made up 75% of the overall volatile solids, or feedstock.

"This is significantly higher than the typical amount of GIW added to the biosolids in existing facilities," de los Reyes says.

This allowed the researchers to achieve the highest methane yield reported to date for lipid-rich waste: 0.785?liters of methane per gram of volatile solids put into the digester.

"This is roughly twice what is commonly reported for similar systems," de los Reyes says.

"This should make methane production on a commercial scale more economically attractive for many wastewater treatment facilities, which may encourage them to capture and sell their methane, rather than burning it off on-site."

The researchers were also able to identify a suite of microbes that appear to be particularly important in converting lipid-rich waste into methane. The researchers are following up with studies on other types of food waste, such as meat and fruit/vegetable waste. They are also looking at fundamental microbial ecological theories to explain how the needed microbial species come to dominate and persist in the ecosystems found inside the waste digesters.
-end-
The paper, "Increased loading stress leads to convergence of microbial communities and high methane yields in adapted anaerobic co-digesters," is published in the journal Water Research. First author of the paper is Ling Wang, a former Ph.D. student at NC State who is now a postdoctoral researcher at the University of Chicago. The paper was co-authored by Elvin Hossen, a Ph.D. student at NC State; Tarek Aziz, an assistant professor of civil, construction and environmental engineering at NC State; and Joel Ducoste, a professor of civil, construction and environmental engineering at NC State.

The work was done with support from the North Carolina Water Resources Research Institute.

North Carolina State University

Related Methane Articles:

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.