Nav: Home

Predicting evolution

November 13, 2019

Aa team of scientists, led by Harvard researchers, has used a new method of DNA "re-barcoding" to track rapid evolution in yeast. The new approach, published in Nature, advances the field of organismic and evolutionary biology and holds promise for real-world results.

The potential impact of the work can be illustrated using the example of flu vaccines. An accurate prediction of what strains of influenza will dominate over the next year is necessary to ensure the vaccines produced are useful. Such prediction relies on tracking evolution.

"We have the sequence of all these flu strains, and we're watching their evolution. What you should be able to do is look at how they've evolved in the past and be able to predict into the future what is going to win and what is going to lose. The problem is, we don't know how to do that prediction," explained Michael Desai, Professor of Organismic and Evolutionary Biology (OEB) and of Physics at Harvard.

Desai, in whose lab the study was conducted, said that the questions are basic: "There is this swarm of mutations that are constantly happening," he said. "How do they battle it out, and what determines who wins?"

"We have been taught that evolution 'is slow' and involves the 'survival of the fittest,' added Alex N. Nguyen Ba, a post-doctoral fellow in Desai's lab. "It turns out that molecular evolution doesn't work that way. It's actually much faster than how we've been taught. This makes evolution way more complex than what has been anticipated." Nguyen Ba is one of three co-lead authors of the new study, along with Ivana Cvijović and José I. Rojas Echenique

Such evolution has been posited mathematically over the past two decades. However, previous lab experiments have not been able to prove or disprove the theory. Rather, they have only been able to examine the process with high resolution over a short period of time, or with low resolution over a long period of time. Collectively, Desai explained, the paper's authors - who include Katherine R. Lawrence of MIT and Harvard's Artur Rego-Costa, along with Xianan Liu of Stanford and Sasha F. Levy of SLAC National Accelerator Laboratory - have done both other kinds of studies.

This new study does both.

"We can identify every single relevant beneficial mutation," said Nguyen Ba, citing new technology that allowed the research team to follow specific genomes (or lineages) for approximately a thousand generations.

Cvijović, formerly a graduate student in Desai's lab and now a researcher at Princeton, said the research could have gone on indefinitely: "A thousand generations is about three months of growth in our conditions. That's enough time to see big changes happening."

Such in-depth, long-term research was possible because of a technological advance in the methodology that allowed what Nguyen Ba called the "re-barcoding" of DNA.

Using an enzyme to place a marker, the "barcode," at a specific DNA site, the researchers were able to follow the DNA of yeast through multiple generations. By re-tagging and re-barcoding subsequent generations to record their lineage, the team could then observe how this DNA was transmitted, noting what survived, and what thrived - or came to dominate - as generations passed.

What they discovered included a few surprises.

According to the existing theory, the "fittest" DNA would be that which showed up most frequently in subsequent generations. However, the scientists observed "fluctuations" that the theories could not account for.

"Mutations and genotypes that seem to have fallen behind can leapfrog and dominate," said Cvijović.

What that means, she says, will be the subject of future research. However, it implies that evolution is, indeed, even more complex than previously thought.

"Our experiment suggests there may be a wide range of a large number of strongly beneficial mutations," she said. "And their benefits are both very strong and very different from one another."
-end-


Harvard University

Related Dna Articles:

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab