Nav: Home

Can a UNICORN outrun earthquakes?

November 13, 2019

Each year, anywhere from a few hundred to tens of thousands of deaths are attributed to the catastrophic effects of major earthquakes. Apart from ground shaking, earthquake hazards include landslides, dam ruptures, flooding, and worse--if the sea floor is suddenly displaced during an earthquake, it can trigger a deadly tsunami.

Although earthquakes can't be prevented, processes involving the Earth's tectonic plates that make up its crust and upper mantle can provide scientists with clues about the possible effects of these impending disasters before they arrive.

A team led by professor Tsuyoshi Ichimura at the Earthquake Research Institute (ERI) at the University of Tokyo (UTokyo) is studying the deformation of tectonic plates to aid physics-based forecasting of natural disasters such as earthquakes. Specifically, the team is simulating a tectonic plate boundary spanning from Vancouver, British Columbia, down to Northern California. At this boundary--called the Cascadia Subduction Zone--the coastal Explorer, Juan de Fuca, and Gorda plates move east and shift underneath the North American Plate, a process known as subduction that can trigger large-magnitude earthquakes and volcanic activity.

The team recently extended and optimized one of its scientific codes for the world's most powerful and smartest supercomputer for open science, the IBM AC922 Summit at the Oak Ridge Leadership Computing Facility (OLCF), a US Department of Energy (DOE) Office of Science User Facility located at DOE's Oak Ridge National Laboratory (ORNL).

By transforming the Unstructured fiNite element ImpliCit sOlver with stRuctured grid coarseNing (UNICORN) code into an artificial intelligence (AI)-like algorithm, the team ran UNICORN at 416 petaflops and gained a 75-fold speedup from a previous state-of-the-art solver by fully leveraging the power of the Tensor Cores on Summit's Volta GPUs. Tensor Cores are specialized processing units that rapidly carry out matrix multiplications and additions using mixed precision calculations.

"The Tensor Cores aren't available for just any type of calculation," said Kohei Fujita, assistant professor at ERI. "For this reason, we had to align all of our data access patterns and multiplication patterns to suit them." Data access patterns determine how data is accessed in memory by a software program and can be organized more efficiently to exploit a particular computer architecture.

Using UNICORN, the UTokyo team simulated a 1,944 km × 2,646 km × 480 km area at the Cascadia Subduction Zone to look at how the tectonic plate is deformed due to a phenomenon called a "fault slip," a sudden shift that occurs at the plate boundary.

The team said the new solver can be used as a tool to aid scientists in the arduous task of long-term earthquake forecasting--a goal that, when realized, could lead to earthquake prediction and disaster mitigation.

Previously, the team demonstrated a general approach to introduce AI to scientific applications in the iMplicit sOlver wiTH artificial intelligence and tRAnsprecision computing, or MOTHRA, code--an achievement that earned them an Association for Computing Machinery Gordon Bell finalist nomination last year.

"For UNICORN, we optimized the code specifically for Summit," said ERI doctoral student Takuma Yamaguchi. "New hardware with some specific features sometimes requires sophisticated implementations to achieve better performance."

UNICORN performs denser computations, allowing it to take full advantage of the unique architecture of Summit, which features 9,216 IBM POWER9 CPUs and 27,648 NVIDIA Volta GPUs. The most computationally expensive piece of the code ran at 1.1 exaflops using mixed precision--a major undertaking for a code that is based on equations rather than deep learning computations. (Codes based on the latter are inherently optimal for systems such as Summit.)

For future earthquake problems, the team will need to apply UNICORN to analyze the Earth's crust and mantle responses to a fault slip over time. This will require thousands of simulations then hundreds or thousands of additional iterations to compare the results with real-world earthquake events.

"To reach our earthquake forecasting goals, we will have to do many simulations of crust deformation and then compare our results with observed records from past earthquakes," Ichimura said.
-end-
The team is presenting this work at the 2019 Supercomputing Conference, SC19, in a poster titled "416-PFLOPS Fast Scalable Implicit Solver on Low-Ordered Unstructured Finite Elements Accelerated by 1.10-ExaFLOPS Kernel with Reformulated AI-Like Algorithm: For Equation-Based Earthquake Modeling." This work was conducted as joint research with NVIDIA, ORNL, the Japan Agency for Marine-Earth Science and Technology, the University of Texas at Austin, and RIKEN. Additionally, the team is presenting the work at the Workshop on Accelerator Programming Using Directives held in conjunction with SC19.

Related Publication: T. Ichimura, K. Fujita, T. Yamaguchi, A. Naruse, J. C. Wells, C. J. Zimmer, T. P. Straatsma, T. Hori, S. Puel, T. W. Becker, M. Hori, and N. Ueda. "416-PFLOPS Fast Scalable Implicit Solver on Low-Ordered Unstructured Finite Elements Accelerated by 1.10-ExaFLOPS Kernel with Reformulated AI-Like Algorithm: For Equation-Based Earthquake Modeling." Poster to be presented at the 2019 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC19), Denver, Colorado, November 17-22, 2019.

DOE/Oak Ridge National Laboratory

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.