Nav: Home

Mechanical signaling cascade central to fibrotic scar tissue development defined

November 13, 2019

In a new study published in Science Signaling, Cleveland Clinic researchers have identified a novel target for new therapies that may help to treat or prevent a host of fibrotic conditions, which contribute to nearly half of overall mortality in the United States.

Fibrotic diseases are characterized by the overproduction of extracellular matrix (ECM), with resultant formation of scar tissue. Cells called myofibroblasts are thought to be the major producers of the scar tissue. Two key signals are needed to generate these myofibroblasts--active TGF-β (transforming growth factor-β) and a mechanical signal.

Previous research (published in the Journal of Clinical Investigation, 2014), led by Mitchell Olman, MD, a researcher in Cleveland Clinic Lerner Research Institute's Department of Inflammation & Immunity and practicing pulmonologist, identified an ion channel called TRPV4 (transient receptor potential vanilloid), as the key transducer of the mechanical signal that leads to myofibroblast generation.

The team knew that blocking these ECM-producing pathways is an important step in identifying potential targets for anti-fibrotic therapies and kept them hard at work.

In the current study, research teams led by Dr. Olman and S.V. Naga Prasad, PhD, also of Lerner Research Institute, discovered that TRPV4 selectively binds to a kinase called PI3Kγ (phosphoinositide 3-kinase γ) to form an intracellular protein complex. This TRPV4-PI3Kγ complex--which is recruited by TGF-β--migrates from inside the cell to the plasma membrane and subsequently amplifies the actions of each individual protein, ultimately resulting in the differentiation of fibroblasts to myofibroblasts. Myofibroblasts produce and expel ECM outside of the cell, and contract the ECM to generate scar tissue--the hallmark of fibrotic diseases.

Taken together, these findings suggest that blocking TRPV4 and PI3Kγ binding may be an unexplored avenue for treating or preventing fibrotic conditions of many major organs. While additional research is necessary, this study provides promising support and rationale for a new treatment approach.
-end-
Lisa Grove, PhD, a postdoctoral fellow in Dr. Olman's laboratory, is first author on the study, which was supported by the National Heart, Lung, and Blood Institute (part of the National Institutes of Health).

Cleveland Clinic

Related Plasma Membrane Articles:

Cell membrane proteins imaged in 3D
A team of scientists including researchers at the National Synchrotron Light Source II have demonstrated a new technique for imaging proteins in 3D with nanoscale resolution.
Quantum-entangled light from a vibrating membrane
Researchers from the Quantum Optomechanics group at the Niels Bohr Institute, University of Copenhagen, recently entangled two laser beams through bouncing them off the same mechanical resonator, a tensioned membrane.
Visualizing molecular patterns of membrane TNF receptors
Whether a sick cell dies, divides, or travels through the body is regulated by a sophisticat-ed interplay of signal molecules and receptors on the cell membrane.
Skin and mucous membrane lesions as complication of pneumonia
Painful inflammatory lesions of the skin and mucous membranes may occur in children who develop bacterial pneumonia.
Membrane intercalation enhances photodynamic bacteria inactivation
Recently, researchers from the Technical Institute of Physics and Chemistry (TIPC) of the Chinese Academy of Sciences, Shanghai Jiao Tong University and the University of Utah reported their work on achieving enhanced membrane intercalation.
Mechanism of epilepsy causing membrane protein is discovered
The team lead by Dr. Lim Hyun-Ho of Korea Brain Research Institute published its paper in Proceedings of the National Academy of Sciences (PNAS).
New wood membrane provides sustainable alternative for water filtration
Inspired by the intricate system of water circulating in a tree, a team of researchers led by Princeton University, have figured out how to use a thin slice of wood as a membrane through which water vapor can evaporate, leaving behind salt or other contaminants.
Physics of life: Motor proteins and membrane dynamics
Motility is an essential property of many cell types, and is driven by molecular motors.
New insights into membrane trafficking regulated by ER fusion protein
Prof. HU Junjie from the Institute of Biophysics and his collaborators reported that the endoplasmic reticulum (ER) fusogen atlastin (ATL) was involved in regulating cargo mobility and COPII formation in the ER.
New membrane efficiently separates mirrored molecules
Prof. LIU Bo and colleagues at the University of Science and Technology of China (USTC) have developed a chiral separation membrane capable of capturing left-handed chiral molecules and releasing right-handed counterpart using two-dimensional layered materials.
More Plasma Membrane News and Plasma Membrane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.