New RNA molecules may play a role in aging

November 13, 2019

PHILADELPHIA - The genome is the master plan for all body parts, from toe nails to eyebrows. But it's not just the blueprint that determines what's built. All of the cellular players that draw instructions from the blueprint add their own interpretation to the design, and researchers are still discovering new players. Using new tools they developed, Thomas Jefferson University researchers have found a sea of a new subtype of RNA molecules in the cell, and evidence suggesting they may play a role in aging processes.

"A lot of research has focused on the most famous short RNA - the microRNA," says senior author Yohei Kirino, PhD, associate professor in the Department of Biochemistry and Molecular Biology and Jefferson's Computational Medicine Center. "MicroRNA is powerful in that it can silence messenger RNA, essentially diverting the production of certain cellular elements encoded by the genome, and we can study them with established methods. We wanted to know what these other, more difficult to capture short RNA were doing in the cell. Our study begins to answer that question."

The research was published in PLOS Genetics on January 13th.

The subtype of RNA Dr. Kirino studied is called cyclic-phosphate containing RNA, or cP-RNA, for short. Although researchers knew this unusual form of phosphate existed on RNA molecules, they assumed it was just an intermediate form generated during RNA digestion. Current methods to track RNA, by amplifying and sequencing the molecule, fail to capture RNA with a cyclic phosphate tail. "The shape is problematic," says Dr. Kirino.

Three years ago, however, Dr. Kirino's lab developed a system for targeting cP-RNAs so that they could be amplified and sequenced. Using this method, the research team was able to sequence all of the cP-RNAs present in the mouse tissues. "This is the first complete sequencing data for this RNA subtype," says Dr. Kirino.

The sequencing revealed several surprises. First, first author Megumi Shigematsu, a research associate in Dr. Kirino's lab, showed there was a lot more of the cP-RNA than expected. Numerous novel cP-RNA species were identified to be generated from various types of cellular RNAs such as transfer RNAs, messenger RNAs, and ribosomal RNAs. This suggests that cyclic phosphates may be involved in the function of RNA with various roles in the cells.

And those cP-RNAs were very abundant - for example, just one cP-RNA from ribosomal RNA were 300-fold more abundant than all of the varieties of microRNA in the cell combined. cP-RNAs were also present throughout tissues of the body of a mouse, including the lung, muscle, spleen and thymus. Finally, the researchers saw that the abundance of cP-RNAs changed over time, decreasing in number as the mouse aged.

"We still have more questions about these molecules than we have answers," says Dr. Kirino. "But given their abundance, how ubiquitous they are in tissues throughout the body, and that their numbers change as tissues age, we know that this is an area that needs further exploration."

Dr. Kirino's lab is working to explore how cP-RNAs play a role in asthma, infectious disease and cancer.
-end-
The work was supported by the National Institutes of Health Grants, R01GM106047 and R21AI130496, and American Cancer Society Research Scholar Grant RSG-17-059-01-RMC.

Article Reference: Megumi Shigematsu, Keisuke Morichika, Takuya Kawamura, Shozo Honda, and Yohei Kirino, "Genome-wide identification of short 2?,3?-cyclic phosphate-containing RNAs and their regulation in aging," PLOS Genetics, DOI: 10.1371/journal.pgen.1008469, 2019.

Media Contact: Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu.

Thomas Jefferson University

Related Microrna Articles from Brightsurf:

Researchers identify microRNA that shows promise for hair regrowth
Researchers from North Carolina State University have identified a microRNA (miRNA) that could promote hair regeneration.

Atherosclerosis -- How a microRNA protects vascular integrity
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a hitherto unknown molecular function of a specific microRNA that preserves integrity of the endothelium and reduces the risk of atherosclerosis.

MicroRNA exhibit unexpected function in driving cancer
New research shows that both strands of microRNA cooperate to drive growth and aggressiveness across cancer types, suggesting that these molecules may be more central in deadly cancers than previously thought.

Investigators narrow in on a microRNA for treating multiple sclerosis
Investigators from Brigham and Women's Hospital have discovered a microRNA -- a small RNA molecule -- that increases during peak disease in a mouse model of MS and in untreated MS patients.

MicroRNA comprehensively analyzed
Messenger RNA transmits genetic information to the proteins, and microRNA plays a key role in the regulation of gene expression.

Novel strategy using microRNA biomarkers can distinguish melanomas from nevi
Melanoma is the least common but one of the most deadly skin cancers.

Methylation of microRNA may be a new powerful biomarker for cancer
Researchers from Osaka University found that levels of methylated microRNA were significantly higher in tissue and serum from cancer patients compared with that from normal controls.

New insight into microRNA function can give gene therapy a boost
Scientists at the University of Eastern Finland and the University of Oxford have shown that small RNA molecules occurring naturally in cells, i.e. microRNAs, are also abundant in cell nuclei.

Researchers unlock mysteries of complex microRNA oncogenes
A new collaborative study, led by researchers at McGill University's Goodman Cancer Research Centre (GCRC), and published in the journal Molecular Cell, uncovers novel functions for polycistronic microRNAs and showing how cancers such as lymphoma twist these functions to reorganize the information networks that control gene expression.

MicroRNA-like RNAs contribute to the lifestyle transition of Arthrobotrys oligospora
Lifestyle transition is a fundamental mechanism that fungi have evolved to survive and proliferate in different environments.

Read More: Microrna News and Microrna Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.