Link between Alzheimer's disease and gut microbiota is confirmed

November 13, 2020

Alzheimer's disease is the most common cause of dementia. Still incurable, it directly affects nearly one million people in Europe, and indirectly millions of family members as well as society as a whole. In recent years, the scientific community has suspected that the gut microbiota plays a role in the development of the disease. A team from the University of Geneva (UNIGE) and the University Hospitals of Geneva (HUG) in Switzerland, together with Italian colleagues from the National Research and Care Center for Alzheimer's and Psychiatric Diseases Fatebenefratelli in Brescia, University of Naples and the IRCCS SDN Research Center in Naples, confirm the correlation, in humans, between an imbalance in the gut microbiota and the development of amyloid plaques in the brain, which are at the origin of the neurodegenerative disorders characteristic of Alzheimer's disease. Proteins produced by certain intestinal bacteria, identified in the blood of patients, could indeed modify the interaction between the immune and the nervous systems and trigger the disease. These results, to be discovered in the Journal of Alzheimer's Disease, make it possible to envisage new preventive strategies based on the modulation of the microbiota of people at risk.

The research laboratory of neurologist Giovanni Frisoni, director of the HUG Memory Centre and professor at the Department of Rehabilitation and Geriatrics of the UNIGE Faculty of Medicine, has been working for several years now on the potential influence of the gut microbiota on the brain, and more particularly on neurodegenerative diseases. «We have already shown that the gut microbiota composition in patients with Alzheimer's disease was altered, compared to people who do not suffer from such disorders,» he explains. «Their microbiota has indeed a reduced microbial diversity, with an over-representation of certain bacteria and a strong decrease in other microbes. Furthermore, we have also discovered an association between an inflammatory phenomenon detected in the blood, certain intestinal bacteria and Alzheimer's disease; hence the hypothesis that we wanted to test here: could inflammation in the blood be a mediator between the microbiota and the brain? »

The brain under influence

Intestinal bacteria can influence the functioning of the brain and promote neurodegeneration through several pathways: they can indeed influence the regulation of the immune system and, consequently, can modify the interaction between the immune system and the nervous system. Lipopolysaccharides, a protein located on the membrane of bacteria with pro-inflammatory properties, have been found in amyloid plaques and around vessels in the brains of people with Alzheimer's disease. In addition, the intestinal microbiota produces metabolites - in particular some short-chain fatty acids - which, having neuroprotective and anti-inflammatory properties, directly or indirectly affect brain function.

«To determine whether inflammation mediators and bacterial metabolites constitute a link between the gut microbiota and amyloid pathology in Alzheimer's disease, we studied a cohort of 89 people between 65 and 85 years of age. Some suffered from Alzheimer's disease or other neurodegenerative diseases causing similar memory problems, while others did not have any memory problems,» reports Moira Marizzoni, a researcher at the Fatebenefratelli Center in Brescia and first author of this work. «Using PET imaging, we measured their amyloid deposition and then quantified the presence in their blood of various inflammation markers and proteins produced by intestinal bacteria, such as lipopolysaccharides and short-chain fatty acids.»

A very clear correlation

«Our results are indisputable: certain bacterial products of the intestinal microbiota are correlated with the quantity of amyloid plaques in the brain,» explains Moira Marizzoni. «Indeed, high blood levels of lipopolysaccharides and certain short-chain fatty acids (acetate and valerate) were associated with both large amyloid deposits in the brain. Conversely, high levels of another short-chain fatty acid, butyrate, were associated with less amyloid pathology.»

This work thus provides proof of an association between certain proteins of the gut microbiota and cerebral amyloidosis through a blood inflammatory phenomenon. Scientists will now work to identify specific bacteria, or a group of bacteria, involved in this phenomenon.

A strategy based on prevention

This discovery paves the way for potentially highly innovative protective strategies - through the administration of a bacterial cocktail, for example, or of pre-biotics to feed the «good» bacteria in our intestine. «However, we shouldn't be too quick to rejoice,» says Frisoni. «Indeed, we must first identify the strains of the cocktail. Then, a neuroprotective effect could only be effective at a very early stage of the disease, with a view to prevention rather than therapy. However, early diagnosis is still one of the main challenges in the management of neurodegenerative diseases, as protocols must be developed to identify high-risk individuals and treat them well before the appearance of detectable symptoms.» This study is also part of a broader prevention effort led by the UNIGE Faculty of Medicine and the HUG Memory Centre.
-end-


Université de Genève

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.