Antibody evolution may predict COVID-19 outcomes

November 13, 2020

For COVID-19, the difference between surviving and not surviving severe disease may be due to the quality, not the quantity, of the patients' antibody development and response, suggests a new Cell paper published by Galit Alter, PhD, a member of the Ragon Institute of MGH, MIT and Harvard.

The study, published in the journal Cell, used Alter's systems serology approach to profile the antibody immune responses of 193 hospitalized COVID-19 patients, comparing responses from patients with moderate and severe disease and patients who passed away from COVID-19.

While all patients developed antibodies against SARS-CoV-2, the way the antibodies developed, or evolved, differed between the three groups. For patients that didn't survive the disease, the antibody response never fully evolved.

"There was a significant defect in the development of IgG antibodies, which may be essential in the early control and elimination of the virus, " Alter says. "Here, we were able to see the global impact of this defective IgG evolution, resulting in a compromised ability to promote essential viral clearing immune functions."

In a mature immune response, antibodies both block infection and direct the immune system to kill infected cells. To guide the killer immune response, antibodies attach to the Fc-receptor, a "docking site" specific to antibodies that is found on all immune cells. Without strong Fc-receptor binding, antibodies may fail to grab and destroy virus following infection.

Compared to survivors, patients who passed from COVID-19 had antibodies that never fully developed the ability to strongly bind to Fc-receptors and therefore may not have been able to fully trigger immune killing activity.

Alter's group, led by Tomer Zohar, Carolin Loos, Stephanie Fischinger, and Caroline Atyeo, PhD, also found that survivors' immune systems could recognize and target an area of the SARS-CoV-2 spike protein known as the S2-domain. The S2 domain is found in other coronaviruses that infect humans, so patients whose antibodies can target it may have pre-existing immunity to the S2 domain because of exposure to other, common coronaviruses.

Patients with antibodies that can recognize S2 domains on different coronaviruses may be able to use this pre-existing immunity to generate killer antibodies faster and sooner following SARS-CoV-2 infection.

"If we can further understand the importance of cross-coronavirus immunity," says Zohar, "researchers may be able to design vaccines able to counteract a much broader range of coronaviruses."

With studies like these, Alter and her team are working to understand the nature of protective immunity against SARS-CoV-2, including partnering with COVID-19 vaccine developers, to help bring an end to this pandemic.
-end-
About the Ragon Institute of MGH, MIT and Harvard

The Ragon Institute of MGH, MIT and Harvard was established in 2009 with a gift from the Phillip T. and Susan M. Ragon Foundation, creating a collaborative scientific mission to harness the immune system to combat and cure human diseases. With a focus on HIV and other infectious diseases, the Ragon Institute draws scientists, clinicians and engineers from diverse backgrounds and areas of expertise to study and understand the immune system with the goal of benefiting patients.

For more information, visit http://www.ragoninstitute.org

Massachusetts General Hospital

Related Antibodies Articles from Brightsurf:

Scientist develops new way to test for COVID-19 antibodies
New research details how a cell-free test rapidly detects COVID-19 neutralizing antibodies and could aid in vaccine testing and drug discovery efforts.

Mussels connect antibodies to treat cancer
POSTECH research team develops innovative local anticancer immunotherapy technology using mussel protein.

For an effective COVID vaccine, look beyond antibodies to T-cells
Most vaccine developers are aiming solely for a robust antibody response against the SARS-CoV-2 virus, despite evidence that antibodies are not the body's primary protective response to infection by coronaviruses, says Marc Hellerstein of UC Berkeley.

Children can have COVID-19 antibodies and virus in their system simultaneously
With many questions remaining around how children spread COVID-19, Children's National Hospital researchers set out to improve the understanding of how long it takes pediatric patients with the virus to clear it from their systems, and at what point they start to make antibodies that work against the coronavirus.

The behavior of therapeutic antibodies in immunotherapy
Since the late 1990s, immunotherapy has been the frontline treatment against lymphomas where synthetic antibodies are used to stop the proliferation of cancerous white blood cells.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Seroprevalence of antibodies to SARS-CoV-2 in 10 US sites
This study estimates how common SARS-CoV-2 antibodies are in convenience samples from 10 geographic sites in the United States.

Neutralizing antibodies in the battle against COVID-19
An important line of defense against SARS-CoV-2 is the formation of neutralizing antibodies.

Three new studies identify neutralizing antibodies against SARS-CoV-2
A trio of papers describes several newly discovered human antibodies that target the SARS-CoV-2 virus, isolated from survivors of SARS-CoV-2 and SARS-CoV infection.

More effective human antibodies possible with chicken cells
Antibodies for potential use as medicines can be made rapidly in chicken cells grown in laboratories.

Read More: Antibodies News and Antibodies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.