The unique hydraulics in the Barbegal water mills, the world's first industrial plant

November 13, 2020

The Barbegal watermills in southern France are a unique complex dating back to the 2nd century AD. The construction with 16 waterwheels is, as far as is known, the first attempt in Europe to build a machine complex on an industrial scale. The complex was created when the Roman Empire was at the height of its power. However, little is known about technological advances, particularly in the field of hydraulics, and the spread of knowledge at the time. A team of scientists led by Professor Cees Passchier from Johannes Gutenberg University Mainz (JGU) has now gained new knowledge about the construction and principle of the water supply to the mills in Barbegal. The research results were published in Scientific Reports.

A mill complex consisting of a total of 16 water wheels in two parallel rows

Watermills were one of the first sources of energy that did not depend on the muscle strength of humans or animals. In the Roman Empire they were used to make flour and sawing stone and wood. As one of the first industrial complexes in European history, the Barbegal watermills are an outstanding example of the development at that time. The mill complex consisted of 16 water wheels in a parallel arrangement of eight wheels each, separated by central buildings and fed by an aqueduct. The upper parts of the complex were destroyed and no traces of the wooden structures have been preserved, which is why the type of mill wheels and how they worked remained a mystery for a long time.

However, carbonate deposits that had formed from the flowing water on the wooden components remained. These were stored in the archaeological museum in Arles and only recently examined in detail. The researchers found an imprint of an unusual, elbow-shaped flume that must have been part of the mill construction. "We combined measurements of the water basins with hydraulic calculations and were able to show that the flume to which this elbow-shaped piece belonged very likely supplied the mill wheels in the lower basins of the complex with water," said Professor Cees Passchier. "The shape of this flume was unknown from other watermills, either from Roman or more recent times. We were therefore puzzled as to why the flume was designed this way and what it was used for."

An elbow-shaped flume as a unique adaptation for the Barbegal mills

At first glance, the team found such a flume unnecessary and even disadvantageous, because it shortens the height from which the water falls onto the mill wheel. "However, our calculations show that the oddly shaped flume is a unique adaptation for the Barbegal mills," explained Passchier. The distribution of the carbonate deposits in the elbow-shaped flume shows that it was inclined slightly backwards against the direction of the current. This created a maximum flow rate in the first, steep leg of the flume, and at the same time the water jet to the mill wheel obtained the correct angle and speed. In the complicated mill system, with small water basins, this unique solution was more efficient than using a traditional, straight water channel. "That shows us the ingenuity of the Roman engineers who built the complex," emphasized Passchier.

"Another discovery was that the wood of the flume was probably cut with a mechanical, water-powered saw, which is possibly the first documented mechanical wood saw - again evidence of industrial activity in ancient times." The research was carried out by a multidisciplinary team of experts in geology, geochemistry, hydraulics, dendrochronology, and archaeology.

The carbonate deposits that formed on the ancient hydraulic structures are an important tool for the researchers for archaeological reconstructions. In an earlier project, the team led by Professor Cees Passchier was able to show that the flour from the Barbegal mills was probably used to make ship biscuits. "The carbonate deposits give us extremely exciting insights into the skills of Roman technicians at a time that can be seen as the direct predecessor of our civilization," added Passchier, Professor of Tectonic Physics and Structural Geology at the JGU Institute of Geosciences from 1993 to 2019, now Senior Research Professor in Geoarchaeology.
-end-


Johannes Gutenberg Universitaet Mainz

Related Water Supply Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

The Colorado river's water supply is predictable owing to long-term ocean memory
A team of scientists at Utah State University has developed a new tool to forecast drought and water flow in the Colorado River several years in advance.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Parents from lower-income families less likely to say child's water supply is safe
Parents from lower-income families are less likely to describe their home tap water as safe, say their water has been tested or feel confident in the quality of drinking fountain water at their child's school compared with higher income peers, a new national poll suggests.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

Researcher looking for clues in the mystery of the Grand Canyon's water supply
Research technician Natalie Jones is the lead author on a paper that looked at how scientists model the vulnerability of karst formations around the Grand Canyon.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.

Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.

Read More: Water Supply News and Water Supply Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.