Scientists Induce A Form Of Leukemia In Mice, Gaining An Unprecedented Glimpse Into The Disorder's Roots

November 13, 1998

WALTHAM, Mass. -- In a finding that promises to expand greatly the scope of leukemia research, scientists at Brandeis University have induced a form of the disease in mice that's strikingly similar to chronic myelogenous leukemia (CML), which affects humans. The development gives researchers their best opportunity yet to probe CML's molecular origins, tracing it from a simple mutation involving two genes into a disease that accounts for fully one-fifth of all leukemia patients.

Ruibao Ren, assistant professor of biology in Brandeis' Rosenstiel Basic Medical Sciences Research Center, and Xiaowu Zhang, a graduate student in biochemistry, have accomplished what a host of leukemia researchers have been striving toward for years: essentially using gene therapy in reverse, they incorporated a leukemia-inducing gene into a mouse's genome with the help of a retrovirus. The work, sponsored by the National Cancer Institute and the American Cancer Society, appears in the Nov. 15 issue of the journal "Blood"; a second group from the University of Pennsylvania reports similar findings in the same issue.

Scientists understand the basics of how CML arises: in a single marrow cell, the genes bcr and abl, usually found on separate chromosomes, brush up against each other and fuse into a new gene called bcr-abl. This entity is a known oncogene, a genetic precursor to cancer. How the disease mushrooms from this isolated genetic flaw in just one of the body's trillion cells into a widespread cancer of the body's white blood cells remains a mystery, though.

"Owing to their medical importance, CML's molecular mechanisms have long been the subject of intense study," Ren says. "But there's a lot we have yet to learn about the pathways by which it and other leukemias arise."

For a decade, scientists' primary avenues of CML research have been the study of tumor cells removed from CML patients and the study of inserted oncogenes' effects on animal cells growing in petri dishes. However, these approaches can't do justice to the complexity of a disease that eventually affects blood cells throughout the body. With the development of the first effective and efficient animal models of CML, Ren's group has succeeded in laying the genetic bedrock for the disease -- meaning they can now observe the disorder's progress from its earliest stages, looking for the weak link in the process that might be vulnerable to drugs.

A number of other scientists have taken approaches more similar to Ren's over the last decade, splicing leukemia genes into the mouse genome. But these previous attempts worked very slowly when they worked at all; often months or even years elapsed between the insertion of a gene and the development of leukemia in a mouse, hobbling research projects. For as-yet unknown reasons, Ren's tactic works much more efficiently and predictably.

After preliminary work with the mouse model, Ren suspects the bcr-abl oncogene may induce leukemia by spurring production of growth factors that cancerous cells need in order to survive. He's now examining whether strains of mice that are genetically incapable of producing these growth factors remain healthy even in the presence of an inserted bcr-abl oncogene.

"Since cancerous cells need certain growth factors, it's possible that targeting them may hold the key to controlling CML," Ren says. "We probably won't be able to prevent the disease from arising, but we may be able to use these growth factors to nip it in the bud."

The only treatments now available for leukemia are bone marrow transplants and chemotherapy, neither of which are viable options for many sicker patients. Through their studies with mice, Ren and his colleagues hope to identify potential new leukemia therapies.
-end-


Brandeis University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.