Scientists advocate genomic sequencing of 'living fossil'

November 14, 2004

STANFORD, Calif., Mon., Nov. 15, 2004 - A team of Stanford University researchers led by Richard Myers, Ph.D., in collaboration with Chris Amemiya, Ph.D., of the Benaroya Research Institute in Seattle, campaign in the December issue of Genome Research for deciphering the genetic code of a "living fossil" fish, the coelacanth.

The genomic sequence of this large "hollow-spined" fish, which populates deep-sea volcanic caves, could hold valuable clues for biologists studying the evolution of vertebrate species. Coelacanths were believed to have been extinct until a live specimen was discovered in 1938 off the coast of South Africa. Both of the known coelacanth species that survive today, Latimeria chalumnae and Latimeria menadoensis, are anatomically similar to their fossil relatives. Furthermore, coelacanths have exhibited little morphological change since their emergence during the Devonian period approximately 360 million years ago.

To date, complete genomic sequences for more than 200 organisms have been obtained, and hundreds more are currently in progress (www.genomesonline.org). These efforts will enable scientists to perform detailed comparisons of the complete genetic codes from multiple species, identifying the sequence changes that contributed to evolutionary adaptation and speciation. Although a wide assortment of species have been chosen for sequencing, ranging from lampreys to armadillos (www.genome.gov/12511858), Myers observed: "We're missing an organism that could really shed light on the emergence of land vertebrates. We don't know what genomic changes accompanied the transition from water to land, and a coelacanth genome could help identify those events."

The coelacanth is one of only two living taxa to occupy the critical, highly informative phylogenetic position between ray-finned fishes and tetrapods. Fleshy, lobed fins, which are one of the defining characteristics of coelacanths, are thought to represent an intermediate evolutionary stage in the transformation of fins to limbs. Lobe-finned relatives of the coelacanth underwent morphological alterations that enabled them to emerge from the sea and inhabit terrestrial environments. Both the coelacanth and the lungfish - the only two living lobe-finned fishes - are related to important evolutionary progenitors of land vertebrates. However, the lungfish genome is very large (more than 100 billion nucleotides in length), making it technically impractical to sequence with currently available technology. The coelacanth genome, on the other hand, is estimated to be smaller than that of human or mouse, making it feasible for whole-genome sequencing.

Jim Noonan, Ph.D., a former graduate student on Myers' team who carried out much of the work described in the Genome Research article, focused on a small but highly informative genomic segment from the Indonesian coelacanth (Latimeria menadoensis) called the protocadherin gene cluster. Encoding for proteins involved in the development and maturation of neurons and synapses in the brain, protocadherin clusters are not present in invertebrates, such as fruit fly (Drosophila melanogaster) or roundworm (Caenorhabditis elegans), but they are found in more evolutionarily complex species, including all vertebrates. Protocadherin gene clusters are composed of a tandem array of multiple gene copies, making them particularly prone to aberrant recombination and thus, to duplication and homogenization. Because this region appears so vulnerable to evolutionary change, Noonan, Amemiya and Myers predicted that the sequence of the coelacanth protocadherin cluster would be a good indicator of the utility of the whole coelacanth genome sequence for inferring vertebrate phylogeny.

Jane Grimwood, Jeremy Schmutz and Mark Dickson at the Stanford Human Genome Center generated more than 600,000 nucleotides of coelacanth genomic sequence spanning the protocadherin gene cluster. Using this sequence, Noonan determined that the structure of the coelacanth cluster was very similar to the orthologous human cluster. The coelacanth genome has 49 protocadherin cluster genes organized into the same three subclusters (alpha, beta, and gamma) as the 54 protocadherin cluster genes in human. In contrast, the zebrafish (Danio rerio) genome contains at least 97 protocadherin genes organized into two distinct clusters, resulting from a whole-genome duplication event.

A major discovery stemming from this work is that the coelacanth genome appears to be evolving slowly relative to land vertebrates and the teleost fishes. This makes the coelacanth genome a better reference for comparative sequence analyses involving land vertebrates than teleost genomes, which are commonly used for such studies but are highly derived due to a whole-genome duplication event. For these reasons, Myers and colleagues argue that the complete genomic sequence of the coelacanth would be valuable for identifying important genome modifications that occurred during the evolution of tetrapod species.
-end-
The article referenced in this release will be published online as a "Genome Research in Advance" paper on November 15, 2004, and in the December 1 print issue of Genome Research. The reference for the article is as follows: Noonan, J.P., Grimwood, J., Danke, J., Schmutz, J., Dickson, M., Amemiya, C.T., Myers, R.M. 2004. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res. 14: 2397-2405. A copy of the paper is available upon request.

Genome Research (www.genome.org) is an international, monthly, peer-reviewed journal published by Cold Spring Harbor Laboratory Press. Launched in 1995, it is one of the five most highly cited primary research journals in genetics and genomics. The journal publishes novel genome-based studies and cutting-edge methodologies in comparative and functional genomics, bioinformatics, proteomics, evolutionary and population genetics, systems biology, epigenetics, and biotechnology.

Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the eduction of scientists, students, and the public. For more information, visit www.cshlpress.com.

Cold Spring Harbor Laboratory

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.