News tips from the Journal of Neuroscience

November 14, 2006

1. VGLUT2 and the Thalamus
Diederik Moechars, Matthew C. Weston, Sandra Leo, Zsuzsanna Callaerts-Vegh, Ilse Goris, Guy Daneels, A. Buist, M. Cik, P. van der Spek, Stefan Kass, Theo Meert, Rudi D'Hooge, Christian Rosenmund, and R. Mark Hampson

"If in doubt, knock it out" is a familiar strategy in neuroscience these days. As a case in point, this week, Moechars et al. report on mice lacking the vesicular glutamate transporter 2 (VGLUT2). VGLUT2, one of three mammalian transporters responsible for the uptake of glutamate into synaptic vesicles, is abundant in thalamus, midbrain, and brainstem. Homozygous VGLUT2 knock-out animals died at birth because of respiratory failure, and thalamic neurons rescued from these animal almost completely lacked glutamatemediated synaptic transmission as studied in autaptic cultures. Neurons from heterozygous mice, on the other hand, showed reduced amplitude of miniature excitatory postsynaptic responses, indicating that the number of transporters controls vesicular glutamate content. Although heterozygous mice responded normally to a battery of behavior tests including water maze learning, acute nociception, or inflammatory pain, they did not develop neuropathic pain-like behavior. The results suggest a role for VGLUT2- ependent thalamic signaling in neuropathic pain.




2. Putting LIF to Work on Self Renewal
Sylvian Bauer and Paul H. Patterson

The adult brain harbors a supply of neural stem cells that could in principle replace neurons lost to injury or disease. Thus, there has been a considerable search for the right cocktail of factors to unleash the regenerative potential of these neural stem cells. This week, Bauer and Patterson tested the effects of leukemia inhibitory factor (LIF), a cytokine that increases stem cells survival in vitro. Using viral vectors, they overexpressed the gene encoding LIF in the subventricular zone of adult mice, an area that continuously generates new neurons for the olfactory bulb. Surprisingly, exogenous LIF decreased the number of newly generated neurons in the olfactory bulb by keeping neural stem cells in the self-renewing stage rather than spurring them to differentiate into neurons. Because LIF increased the pool of neural stem cells, the authors suggest that adding other factors to this pool might then kick-art the differentiation needed to promote regeneration.




3. CCK and the Nocebo Effect
Fabrizio Benedetti, Martina Amanzio, Sergio Vighetti, and Giovanni Asteggiano

The placebo effect needs no introduction: give patients a "sugar pill" along with a suggestion that it will cure their symptoms, and they feel better. But the opposite occurs if the pill is given with a suggestion that the symptoms will get worse. Benedetti et al. tested this lesser studied phenomenon, the nocebo effect, on physical pain induced by restricting forearm blood flow with a tourniquet during exercise. As expected, giving study volunteers an inert pill that they were told would increase pain, in fact did so. This nocebo effect was coupled with increases in circulating markers of hypothalamic-pituitary- adrenal (HPA) axis activity. Diazepam blocked the increase in both HPA markers and pain sensitivity, whereas proglumide, an antagonist of cholecystokinin receptors, blocked only the pain effects. Thus, it seems that nocebo suggestions induce anticipatory anxiety, leading to hyperactivity of the HPA axis. Anxiety then activates cholecystokinin signaling that increases pain transmission.




4. SCAM Analysis of the ?-Secretase Catalytic Domain
Chihiro Sato, Yuichi Morohashi, Taisuke Tomita, and Takeshi Iwatsubo

Like molecular scissors, proteases chop proteins in pieces. Because they hydrolyze peptide bonds with water, the catalytic domains of these enzymes are usually located within aqueous compartments and thus are "self-lubricating." But some membrane proteases have their active sites buried within the hydrophobic milieu of the cell membrane. So where do they get their water? This week, Sato et al. answer this question for the catalytic core of presenilin 1, an essential component of the ?- secretase complex that cleaves amyloid precursor protein to generate the infamous amyloid-ß peptide. The authors systematically substituted cysteines at every residue in transmembrane domains 6 and 7 of presenilin 1 and then determined their accessibility to a membrane-impermeable reagent that modifies cysteines. From the analysis, they concluded that the two transmembrane domains must form a water-filled, funnel-shaped pore within the enzyme complex where peptide bonds are cleaved.
-end-


Society for Neuroscience

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.