Left brain helps hear through the noise

November 14, 2007

Our brain is very good at picking up speech even in a noisy room, an adaptation essential for holding a conversation at a cocktail party, and now we are beginning to understand the neural interactions that underlie this ability. An international research team reports today, in the online open access journal BMC Biology, how investigations using neuroimaging have revealed that the brain's left hemisphere helps discern the signal from the noise.

In our daily lives, we are exposed to many different sounds from multiple sources at the same time, from traffic noise to background chatter. These noisy signals interact and compete with each other when they are being processed by the brain, a process called simultaneous masking. The brain's response to masking stimuli brings about the 'cocktail-party effect' so that we are able to hear a particular sound, even in presence of a competing sound or background noise.

Hidehiko Okamoto and colleagues of the Institute for Biomagnetism and Biosignal analysis, Muenster, Germany, and colleagues in Japan and Canada have used a neuroimaging technique known as magnetoencephalography (MEG) to follow the underlying neural mechanisms and hemispheric differences related to simultaneous masking as volunteers listened to different combinations of test and background sounds. Test sounds were played either to the left or to the right ear, while the competing noise was presented either to the same or to the opposite ear.

By monitoring the brain's response to these different sound combinations, the team observed that the left hemisphere was the site of most neural activity associated with processing sounds in a noisy environment.
-end-
Article:
Left hemispheric dominance during auditory processing in noisy environment
Hidehiko Okamoto, Henning Stracke, Bernhard Ross, Ryusuke Kakigi and Christo Pantev
BMC Biology (in press)

During embargo, article available at: http://www.biomedcentral.com/imedia/5519646381467387_article.pdf?random=662851

After the embargo, article available from the journal website at: http://www.biomedcentral.com/bmcbiol/

Article citation and URL available on request at press@biomedcentral.com on the day of publication

Please quote the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's Open Access policy.

For author contact details please contact Charlotte Webber (Press Office, BioMed Central)
Phone: +44 (0)20 7631 9980
Email: press@biomedcentral.com

BMC Biology - the flagship biology journal of the BMC series - publishes research and methodology articles of special importance and broad interest in any area of biology and biomedical sciences. BMC Biology (ISSN 1741-7007) is covered by PubMed, Scopus, CAS, BIOSIS, Zoological Record and Google Scholar. The journal is tracked by Thomson Scientific (ISI) and will receive its first Impact Factor in 2008.

BioMed Central (http://www.biomedcentral.com) is an independent online publishing house committed to providing open access to peer-reviewed biological and medical research. This commitment is based on the view that immediate free access to research and the ability to freely archive and reuse published information is essential to the rapid and efficient communication of science.

BioMed Central currently publishes over 180 journals across biology and medicine. In addition to open-access original research, BioMed Central also publishes reviews, commentaries and other non-original-research content. Depending on the policies of the individual journal, this content may be open access or provided only to subscribers.

BioMed Central

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.