Your brain 'sees' things even when you don't

November 14, 2013

The brain processes visual input to the level of understanding its meaning even if we never consciously perceive that input, according to new research published in Psychological Science, a journal of the Association for Psychological Science.

The research, led by Jay Sanguinetti of the University of Arizona, challenges currently accepted models about how the brain processes visual information.

Sanguinetti, a doctoral candidate in the UA's department of psychology in the College of Science, showed study participants a series of black silhouettes, some of which contained recognizable, real-world objects hidden in the white spaces on the outsides.

Working with John Allen, Distinguished Professor of psychology, cognitive science and neuroscience at the University of Arizona, Sanguinetti monitored subjects' brainwaves with an electroencephalogram, or EEG, while they viewed the objects.

"There's a brain signature for meaningful processing," Sanguinetti said. Participants' EEG data showed the signature, a peak in the oscillating brainwaves that occurs about 400 milliseconds after the image was shown, called N400.

"The participants in our experiments don't see those shapes on the outside; nonetheless, the brain signature tells us that they have processed the meaning of those shapes," said Mary Peterson, a professor in the UA department of psychology and Sanguinetti's advisor. "But the brain rejects them as interpretations, and if it rejects the shapes from conscious perception, then you won't have any awareness of them."

Importantly, the N400 waveform did not appear on the EEG of subjects when they were seeing truly novel silhouettes, without images of any real-world objects.

These findings lead to the question of why the brain would process the meaning of a shape when a person is ultimately not going to perceive it, Sanguinetti noted.

"Many, many theorists assume that because it takes a lot of energy for brain processing, that the brain is only going to spend time processing what you're ultimately going to perceive," added Peterson. "But in fact the brain is deciding what you're going to perceive, and it's processing all of the information and then it's determining what's the best interpretation."

"This is a window into what the brain is doing all the time," Peterson said. "It's always sifting through a variety of possibilities and finding the best interpretation for what's out there. And the best interpretation may vary with the situation."

Our brains may have evolved to sift through the barrage of visual input in our eyes and identify those things that are most important for us to consciously perceive, such as a threat or resources such as food, Peterson suggested.

"There are a lot of complex processes that happen in the brain to help us interpret all this complexity that hits our eyeballs," Sanguinetti said. "The brain is able to process and interpret this information very quickly."

Sanguinetti's study indicates that ultimately, when we walk down a street, our eyes perceive and our brains recognize meaningful objects, even though we may never be consciously aware of them.

In the future, Peterson and Sanguinetti plan to look for the specific regions in the brain where the processing of meaning occurs. "We're trying to look at exactly what brain regions are involved," said Peterson. "The EEG tells us this processing is happening and it tells us when it's happening, but it doesn't tell us where it's occurring in the brain."
-end-
For more information about this study, please contact: Joseph Sanguinetti at sanguine@email.arizona.edu.

The article abstract can be found online: http://pss.sagepub.com/content/early/2013/11/08/0956797613502814.abstract

This research was supported by a grant from the National Science Foundation.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "The Ground Side of an Object Perceived as Shapeless yet Processed for Semantics" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Association for Psychological Science

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.