Center for Regenerative Medicine receives 3 prestigious NIH awards

November 14, 2016

BOSTON--The Center for Regenerative Medicine (CReM) at Boston Medical Center (BMC) and Boston University School of Medicine (BUSM) has received three prestigious awards from the National Institutes of Health (NIH) to further its commitment to induced pluripotent stem cell (iPSC) research and education.

Created from a patient's skin or blood cells, iPSCs have the potential to form any type of cell, providing a potentially inexhaustible source of patient cells for biomedical research, thus opening the door for patient-specific medicine.

Two of the NIH awards, totaling $5 million, will support a new National Heart, Lung, and Blood Institute (NHLBI) initiative called the Progenitor Cell Translational Consortium which aims to develop stem cell-based treatments for heart, lung and blood diseases. CReM, which is the only institution to receive two of these prestigious awards nationally, will focus on how gene-editing and cell-based therapies can be used for treatment of pulmonary diseases.

"We are honored to receive these awards which will allow us to gain greater understanding about how we treat the most medically complex cases and improve our patient's lives," said Darrell Kotton, MD, director of CReM and Seldin Professor of Medicine at BUSM who will serve as co-principal investigator of the projects, together with investigators from Cincinnati Children's Hospital, University of Pennsylvania, and UCSF.

Additionally, CReM and the Boston University (BU) Clinical and Transitional Science Institute (CTSI) received a $4.1 million NCATS award to form a national CTSA network for iPSCs banking, sharing and training. The consortium, which will be led by BU principal investigators Kotton and Dr. Andrew Wilson, Assistant Professor of Medicine, will include researchers from the University of Pennsylvania, Harvard University and the University of Chicago.

"The discovery of iPSCs provides an unprecedented opportunity for any scientist to derive an inexhaustible supply of patient-derived primary cells. These cells, which contain each patient's own genetic background, can now be applied for in vitro human disease modeling, drug screening of personalized therapeutics, drug screening for unknown side effects and the development of future regenerative cell-based therapies," said David Center, MD, the Gordon and Ruth Snider Professor of Pulmonary Medicine and Chief of the division of Pulmonary, Allergy, Sleep and Critical Care medicine at BMC and Director of the Clinical and Translational Science Institute at BU.

"Coupled with another $2.1 million CTSI award for training individuals in iPSC technology, we have the opportunity to make an impact on patient's lives for many years to come."

The consortium aims to make patient-derived iPSCs, along with the tools and expertise for their genetic manipulation, available to the greater research community on a large scale with the goal of understanding these complex diseases and developing potential therapies.

To achieve this goal, researchers propose sharing more than 1,000 iPSCs lines-- already derived by the teams taking part in the consortium--nationwide to both basic and clinical researchers; developing and supporting a formalized education and training program for other researchers; and supporting the maintenance and sharing of gene-editing tools and gene-edited iPSCs lines that will enable scientists to manipulate the human genome at will.

Each team will be led by researchers who have championed "open source biology". The approach encourages researchers to freely share iPSCs lines and their reprogramming reagents with others in the field. To date, the group is working with more than 500 labs across the globe.
About Boston Medical Center

Boston Medical Center is a private, not-for-profit, 487-bed, academic medical center that is the primary teaching affiliate of Boston University School of Medicine. It is the largest and busiest provider of trauma and emergency services in New England. Committed to providing high-quality health care to all, the hospital offers a full spectrum of pediatric and adult care services including primary and family medicine and advanced specialty care with an emphasis on community-based care. Boston Medical Center offers specialized care for complex health problems and is a leading research institution, receiving more than $119 million in sponsored research funding in fiscal year 2015. It is the 11th largest recipient of funding in the U.S. from the National Institutes of Health among independent hospitals. In 1997, BMC founded Boston Medical Center Health Plan, Inc., now one of the top ranked Medicaid MCOs in the country, as a non-profit managed care organization. It does business in Massachusetts as BMC HealthNet Plan and as Well Sense Health Plan in New Hampshire, serving more than 315,000 people, collectively. Boston Medical Center and Boston University School of Medicine are partners in the Boston HealthNet - 13 community health centers focused on providing exceptional health care to residents of Boston. For more information, please visit

Boston University Medical Center

Related Regenerative Medicine Articles from Brightsurf:

Stem cells: new insights for future regenerative medicine approaches
The study published in Open Biology unravels important data for a better understanding of the process of division in stem cells and for the development of safer ways to use them in medicine.

Engineered developmental signals could illuminate regenerative medicine
For a tiny embryo to develop into an adult organism, its cells must develop in precise patterns and interact with their neighbors in carefully orchestrated ways.

A new discovery in regenerative medicine
An international collaboration involving Monash University and Duke-NUS researchers have made an unexpected world-first stem cell discovery that may lead to new treatments for placenta complications during pregnancy.

New research into stem cell mutations could improve regenerative medicine
Research from the University of Sheffield has given new insight into the cause of mutations in pluripotent stem cells and potential ways of stopping these mutations from occurring.

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.

NUS Medicine researchers can reprogramme cells to original state for regenerative medicine
Scientists from NUS Medicine have found a way to induce totipotency in embryonic cells that have already matured into pluripotency.

A new material for regenerative medicine capable to control cell immune response
Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

Optoceutics: A new technique using light for regenerative medicine
Researchers in Italy at IIT-Istituto Italiano di Tecnologia used visible light together with photo-sensitive and biocompatible materials to facilitate the formation of new blood vessels in vitro.

Major stem cell discovery to boost research into development and regenerative medicine
A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells.

Spinning-prism microscope helps gather stem cells for regenerative medicine
Pluripotent stem cells are crucial to regenerative medicine, but better screening methods are needed to isolate safe and effective cells for medical use.

Read More: Regenerative Medicine News and Regenerative Medicine Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to