Nav: Home

Researchers propose noninvasive method to detect bone marrow cancer

November 14, 2016

(Boston)--For the first time, researchers have shown that using Magnetic Resonance Imaging (MRI) can effectively identify bone marrow cancer (myelofibrosis) in an experimental model.

The findings, published in the journal Blood Cancer, may change the way this disease is diagnosed which is now through invasive bone marrow biopsies.

Myelofibrosis is a slow evolving condition hallmarked by increased myeloid cells and in the case of primary myelofibrosis, with an excessive number of large bone marrow cells called megakaryocytes. The pathology also is characterized by structural abnormality of the bone marrow matrix, which at end-stage manifests in excessive deposition of reticulin fibers and cross-linked collagen in the bone marrow, suppression of normal blood cell development and bone marrow failure. Currently the diagnosis is made via an invasive bone marrow biopsy and histophatology to assess cellularity and reticulin deposition in the marrow.

Researchers at Boston University School of Medicine (BUSM) led by Katya Ravid, PhD, designed and tested whether a T2-weighted MRI could detect bone marrow fibrosis in an experimental model. The group was able to show that an MRI could detect a pre-fibrotic state of the disease with a clear bright signal, as well as progressive myelofibrosis. The investigators proposed that the abundance of large megakaryocytes contribute to the signal, since in T2-weighted MR-images, increased water/proton content, as in increased cellularity, yield high (bright) MR-signal intensity.

This is the first study to evaluate a T2-weighted MRI in an experimental model of myelofibrosis with examination of potential sources of the MRI signal, researchers said. "Our study provides proof-of-concept that this non-invasive modality can detect pre-fibrotic stages of the disease," said Ravid, professor of medicine and biochemistry at BUSM. "It is intriguing to speculate that future pre-biopsy MRI of the human pathology might guide in some cases decisions on if and where to biopsy," she added.
-end-
Also contributing to this study were BUSM researchers Victoria Herrera, MD, and Shinobu Matsuura, PhD, as well as Aaron Grant, PhD, from Harvard Medical School.

This study was supported by the MPN Research Foundation and the National Heart, Lung, and Blood Institute.

Boston University Medical Center

Related Bone Marrow Articles:

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.
Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.
Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.
Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.
Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.
Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.
Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.
New material will allow abandoning bone marrow transplantation
Scientists from the National University of Science and Technology 'MISIS' developed nanomaterial, which will be able to restore the internal structure of bones damaged due to osteoporosis and osteomyelitis.
Blood diseases cured with bone marrow transplant
Doubling the low amount of total body radiation delivered to patients undergoing bone marrow transplants with donor cells that are only 'half-matched' increased the rate of engraftment from only about 50 percent to nearly 100 percent, according to a new study by Johns Hopkins researchers.
Vitamin D and immune cells stimulate bone marrow disease
The bone marrow disease myelofibrosis is stimulated by excessive signaling from vitamin D and immune cells known as macrophages, reveals a Japanese research team.
More Bone Marrow News and Bone Marrow Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.