Nav: Home

X-ray laser gets first real-time snapshots of a chemical flipping a biological switch

November 14, 2016

Menlo Park, Calif. -- Scientists have used the powerful X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory to make the first snapshots of a chemical interaction between two biomolecules - one that flips an RNA "switch" that regulates production of proteins, the workhorse molecules of life.

The results, published today in Nature, show the game-changing potential of X-ray free-electron lasers, or XFELs, for studying RNA, which guides protein manufacturing in the cell, serves as the primary genetic material in retroviruses such as HIV and also plays a role in most forms of cancer.

And because this particular type of RNA switch, known as a riboswitch, is found only in bacteria, a deeper understanding of its function may offer a way to turn off protein production and kill harmful germs without causing side effects in the humans they infect.

"Previous experiments at SLAC's X-ray laser have studied biological reactions like photosynthesis that are triggered by light. But this is the first to observe one that is triggered by the chemical interaction of two biomolecules in real time and at the atomic scale," said Yun-Xing Wang, a structural biologist at the National Cancer Institute's Center for Cancer Research who led the international research team.

"This really demonstrates the unique capability that X-ray free-electron lasers offer that no current technology, or any other technology on the horizon, can do. It's like you have a camera with a very fast shutter speed, so you can catch every move of the biomolecules in action."

The experiments were carried out at SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility. They are the first to demonstrate how XFELs can take snapshots and potentially make movies of RNA and other biomolecules as they chemically interact - offering glimpses into fundamental workings of the cell that can't be obtained any other way.

Seeing RNA Shape Shifting

RNA is a key part of the genetic material in all living cells. It comes in several types that work together to guide the production of proteins by the cell's ribosomes, according to blueprints encoded in DNA.

But both DNA and RNA also contain extensive regions that don't code for any protein - the so-called genetic "dark matter." Scientists thought for many years that these regions didn't do anything. Now they know that they play an important role in determining where and when genes turn on and off and otherwise fine-tuning their function. The vast majority of cancers are due to mutations in these non-coding regions, Wang said, so understanding how these regions work is important for cancer research as well as fundamental biology.

However, figuring out what the RNA non-coding regions do is difficult. RNA molecules are wobbly and flexible, so it's hard to incorporate them into the large crystals typically needed to study their atomic structure at X-ray light sources.

LCLS removes this barrier by allowing scientists to get structural information from much smaller, nanosized crystals, which are much easier to make. Its powerful X-ray laser pulses, a billion times brighter than any available before, are so short that they collect data from each crystal in a few millionths of a billionth of a second, before damage from the X-rays sets in.

Wang's team studied a riboswitch from Vibrio vulnificus, a bacterium related to the one that causes cholera. The riboswitch sits in a long strand of messenger RNA (mRNA), which copies DNA's instructions for making a protein so they can be read and carried out by the ribosome. The switch acts like a thermostat that regulates protein production.

In this case, the mRNA guides production of a protein that in turn helps to produce a small molecule called adenine. When there is too much adenine in the bacterial cell, adenine molecules enter pockets in the riboswitches and flip the riboswitches into a different shape, and this changes the pace of protein and adenine production.

First Stills of an Elegant Film

For the LCLS experiments, the researchers made nanocrystals that incorporated millions of copies of the riboswitch and mixed them with a solution containing adenine molecules. Each crystal was so small that adenine could quickly and uniformly penetrate into every corner of it, enter riboswitch pockets and flip them almost instantaneously, as if they were millions of synchronized swimmers executing a single flawless move.

The scientists took snapshots of this interaction by hitting the crystals with X-ray laser pulses at carefully timed intervals after the mixing started. This gave them the first glimpse of a fleeting intermediate stage in the process, which occurred 10 seconds in. Separately, they obtained the first images of the riboswitch in its initial, empty-pocket state, and discovered that it existed in two slightly different configurations, only one of which participates in switching.

The researchers were surprised to discover that the sudden change in the shape of the riboswitches was so dramatic that it changed the shape of the entire crystal, too. Normally a major change like this would crack the crystal and spoil the experiment. But because these crystals were so small they held together, so the X-ray laser could still get structural information from them.

"To me it's still a mystery how the crystal managed to do that," said Soichi Wakatsuki, a professor at SLAC and at the Stanford School of Medicine and head of the lab's Biosciences Division, who was not part of the research team. "This actually opens up a lot of new possibilities and gives us a new way to look at how RNA and proteins interact with small molecules, so this is very exciting."
-end-
In addition to the National Cancer Institute and SLAC's LCLS, scientists contributing to the research came from Arizona State University, Johns Hopkins University, the Center for Free-Electron Laser Science at Deutsches Elektronen-Synchrotron (DESY), University of Hamburg, Hauptmann-Woodward Medical Research Institute, the National Institutes of Health and the DOE's Argonne National Laboratory. Funding came from the National Science Foundation and the NIH Intramural Research Programs.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit http://www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/SLAC National Accelerator Laboratory

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.