Nav: Home

Cellular 'cannibalism' may be fundamental to development across evolution

November 14, 2016

In living beings, from roundworms to humans, some cells may ball up unwanted contents on their surfaces for other cells to "eat." This is the finding of a study led by researchers at NYU Langone Medical Center and published online November 14 in Nature Cell Biology.

The results raise the possibility that cellular cannibalism may be more widespread than once thought, and may even shed light on certain brain disorders.

The work was done in the worm species C. elegans, which is famous for its role in past discoveries of vital mechanisms also at work in human cells. Specifically, the study found that, as an embryo develops into a worm, cells that pass on genes to the next generation (primordial germ cells or PGCs) form outer lobes, or "balls," that are digested by nearby cells that form the worm's gut.

By forming lobes destined to be clipped off and digested, germ cells may be discarding large amounts of material that would otherwise interfere with reproduction, say the study authors.

"These findings define a new way in which cells dramatically change their contents via cannibalism, and, in doing so, may reveal a new set of genetic causes for diseases when this mechanism goes awry," says Jeremy Nance, PhD, associate professor in the Department of Cell Biology at NYU Langone.

The study poses the question of whether this ability to quickly edit cell contents is vital to the function of many cell types in many organisms, including humans. A 2012 paper led by a separate research team, for instance, proposed that immune cells in the brain prune nerve connections by "eating" bulbs on nearby nerve cell extensions to edit brain circuitry. Some experts have asked whether some forms of autism may be caused by faulty cellular cannibalism. If these mechanisms exist, how widespread are they?

Traveling Partners

In worms, as in humans, certain cells in a portion of the embryo, called the endoderm, migrate and become the cells that form the gut. In both species, cells that go on to form the sexual organs, and the cells that will become sperm and eggs, migrate alongside pre-gut cells to end up in their final location at the bottom of the gut.

It was while studying this partnership between co-migrating cell types that the research team first observed one cell type eating part of another. Researchers also found that the lobes put forth for removal by PGCs contained large numbers of mitochondria, the cell powerhouses that convert blood sugar into molecules that serve as cellular energy currency.

One theory for why this occurs is that mitochondria, as a side effect of making energy, also produce highly-reactive free radicals that can damage DNA in a process called oxidative stress. This is a problem for any cell, but more so for the gamete or germ cell, which carries the copy of genetic information that will serve as the template for the offspring. Any random change there could have devastating consequences, not just for one cell, but for future generations.

The study results raise the question of whether germ cells trade lower energy production, by getting rid of mitochondria via cell cannibalism, for greater DNA protection. Researchers will also seek to determine if genetic risk for some forms of sterility proceeds from the failure of cannibalistic mechanisms to protect gametes from oxidative stress.

Specifically, the research team found that lobe cannibalism is carefully choreographed by biochemical signals, with all lobes forming during the same developmental time window and bitten off in a set order. Furthermore, progenitor gamete cells in worms always form lobes full of mitochondria, but the lobes are only cut off if partnering endodermal cells are present.

Moving forward, the research team will seek to identify the signals by which PGC lobes embed specifically into endodermal cells, and those that tell endodermal cells to eat lobes. The work may also help the field to determine whether similar cellular remodeling events shape brain circuitry, say the authors.
Along with Nance, study authors were Yusuff Abdu and Chelsea Maniscalco in the Skirball Institute of Biomolecular Medicine, along with John Heddleston and Teng-Leong Chew from the Advanced Imaging Center at the Howard Hughes Medical Institute in Ashburn, Virginia. The study was funded by grants from the National Institutes of Health, and sequencing of genomic DNA samples was performed at the NYULMC Genome Technology Center, which is partially supported by a grant (P30CA016087) from the Perlmutter Cancer Center.

NYU Langone Medical Center / New York University School of Medicine

Related Mitochondria Articles:

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.
'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.
A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.
Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.
First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.
Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.
Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.