Nav: Home

NASA finds unusual origins of high-energy electrons

November 14, 2016

High above the surface, Earth's magnetic field constantly deflects incoming supersonic particles from the sun. These particles are disturbed in regions just outside of Earth's magnetic field - and some are reflected into a turbulent region called the foreshock. New observations from NASA's THEMIS mission show that this turbulent region can accelerate electrons up to speeds approaching the speed of light. Such extremely fast particles have been observed in near-Earth space and many other places in the universe, but the mechanisms that accelerate them have not yet been concretely understood.

The new results provide the first steps towards an answer, while opening up more questions. The research finds electrons can be accelerated to extremely high speeds in a region farther from Earth than previously thought possible - leading to new inquiries about what causes the acceleration. These findings may change the accepted theories on how electrons can be accelerated not only in shocks near Earth, but also throughout the universe. Having a better understanding of how particles are energized will help scientists and engineers better equip spacecraft and astronauts to deal with these particles, which can cause equipment to malfunction and affect space travelers.

"This affects pretty much every field that deals with high-energy particles, from studies of cosmic rays to solar flares and coronal mass ejections, which have the potential to damage satellites and affect astronauts on expeditions to Mars," said Lynn Wilson, lead author of the paper on these results at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The results, published in Physical Review Letters on Nov. 14, 2016, describe how such particles may get accelerated in specific regions just beyond Earth's magnetic field. Typically, a particle streaming toward Earth first encounters a boundary region known as the bow shock, which forms a protective barrier between the sun and Earth. The magnetic field in the bow shock slows the particles, causing most to be deflected away from Earth, though some are reflected back towards the sun. These reflected particles form a region of electrons and ions called the foreshock region.

Some of those particles in the foreshock region are highly energetic, fast moving electrons and ions. Historically, scientists have thought one way these particles get to such high energies is by bouncing back and forth across the bow shock, gaining a little extra energy from each collision. However, the new observations suggest the particles can also gain energy through electromagnetic activity in the foreshock region itself.

The observations that led to this discovery were taken from one of the THEMIS - short for Time History of Events and Macroscale Interactions during Substorms - mission satellites. The five THEMIS satellites circled Earth to study how the planet's magnetosphere captured and released solar wind energy, in order to understand what initiates the geomagnetic substorms that cause aurora. The THEMIS orbits took the spacecraft across the foreshock boundary regions. The primary THEMIS mission concluded successfully in 2010 and now two of the satellites collect data in orbit around the moon.

Operating between the sun and Earth, the spacecraft found electrons accelerated to extremely high energies. The accelerated observations lasted less than a minute, but were much higher than the average energy of particles in the region, and much higher than can be explained by collisions alone. Simultaneous observations from the Wind and STEREO spacecraft showed no solar radio bursts or interplanetary shocks, so the high-energy electrons did not originate from solar activity.

"This is a puzzling case because we're seeing energetic electrons where we don't think they should be, and no model fits them," said David Sibeck, co-author and THEMIS project scientist at NASA Goddard. "There is a gap in our knowledge, something basic is missing."

The electrons also could not have originated from the bow shock, as had been previously thought. If the electrons were accelerated in the bow shock, they would have a preferred movement direction and location - in line with the magnetic field and moving away from the bow shock in a small, specific region. However, the observed electrons were moving in all directions, not just along magnetic field lines. Additionally, the bow shock can only produce energies at roughly one tenth of the observed electrons' energies. Instead, the cause of the electrons' acceleration was found to be within the foreshock region itself.

"It seems to suggest that incredibly small scale things are doing this because the large scale stuff can't explain it," Wilson said.

High-energy particles have been observed in the foreshock region for more than 50 years, but until now, no one had seen the high-energy electrons originate from within the foreshock region. This is partially due to the short timescale on which the electrons are accelerated, as previous observations had averaged over several minutes, which may have hidden any event. THEMIS gathers observations much more quickly, making it uniquely able to see the particles.

Next, the researchers intend to gather more observations from THEMIS to determine the specific mechanism behind the electrons' acceleration.

NASA/Goddard Space Flight Center

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at