Nav: Home

Graphene plasmons reach the infrared

November 14, 2016

WASHINGTON - Graphene's unique properties can be both a blessing and a curse to researchers, especially to those at the intersection of optical and electronic applications. These single-atom thick sheets feature highly mobile electrons on their flexible profiles, making them excellent conductors, but in general graphene sheets do not interact with light efficiently.

Problematic for shorter wavelength light, photons in the near infrared region of the spectrum, where telecommunication applications become realizable. In a paper published this week in the journal Optics Letters, from The Optical Society (OSA), researchers at the Technical University of Denmark have demonstrated, for the first time, efficient absorption enhancement at a wavelength of 2 micrometers by graphene, specifically by the plasmons of nanoscale graphene disks.

Much like water ripples arising from the energy of a dropped pebble, electronic oscillations can arise in freely moving conduction electrons by absorbing light energy. The resulting collective, coherent motions of these electrons are called plasmons, which also serve to amplify the strength of the absorbed light's electric field at close proximity. Plasmons are becoming increasingly commonplace in various optoelectronic applications where highly conductive metals can be easily integrated.

Graphene plasmons, however, face an extra set of challenges unfamiliar to the plasmons of bulk metals. One of these challenges is the relatively long wavelength needed to excite them. Many efforts taking advantage of the enhancing effects of plasmons on graphene have demonstrated promise, but for low energy light.

"The motivation of our work is to push graphene plasmons to shorter wavelengths in order to integrate graphene plasmon concepts with existing mature technologies," said Sanshui Xiao, associate professor from the Technical University of Denmark.

To do so, Xiao, Wang and their collaborators took inspiration from recent developments at the university's Center of Nanostructured Graphene (CNG), where they demonstrated a self-assembly method resulting in large arrays of graphene nanostructures. Their method primarily uses geometry to bolster the graphene plasmon effects at shorter wavelengths by decreasing the size of the graphene structures.

Using lithographic masks prepared by a block copolymer based self-assembly method, the researchers made arrays of graphene nanodisks. They controlled the final size of the disks by exposing the array to oxygen plasma which etched away at the disks, bringing the average diameter down to approximately 18 nm. This is approximately 1000 times smaller than the width of a human hair.

The array of approximately 18 nm disks, resulting from 10 seconds of etching with oxygen plasma, showed a clear resonance with 2 micrometer wavelength light, the shortest wavelength resonance ever observed in graphene plasmons.

An assumption might be that longer etching times or finer lithographic masks, and therefore smaller disks, would result in even shorter wavelengths. Generally speaking this is true, but at 18 nm the disks already start requiring consideration of atomic details and quantum effects.

Instead, the team plans to tune graphene plasmon resonances at smaller scales in the future using electrical gating methods, where the local concentration of electrons and electric field profile alter resonances.

Xiao said, "To further push graphene plasmons to shorter wavelengths, we plan to use electrical gating. Instead of graphene disks, graphene antidots (i.e. graphene sheets with regular holes) will be chosen because it is easy to implement a back-gating technique."

There are also fundamental limits to the physics that prevent shortening the graphene plasmon resonance wavelength with more etching. "When the wavelength becomes shorter, the interband transition will soon play a key role, leading to broadening of the resonance. Due to weak coupling of light with graphene plasmons and this broadening effect, it will become hard to observe the resonance feature," Xiao explained.
-end-
This project is supported by Danish National Research Foundation Center for Nanostructured Graphene (DNRF103).

Paper: Z. Wang, T. Li, K. Almdal, N. Mortensen, S. Xiau and S. Ndoni, "Experimental demonstration of graphene plasmons working close to the near-infrared window," Opt. Lett. 41, 5345-5348. DOI: 10.1364/OL.41.005345

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals and fiber optics.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contacts:
Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

Research Contact:
Sanshui Xiao
saxi@fotonik.dtu.dk

The Optical Society

Related Graphene Articles:

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
Graphene's magic is in the defects
A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous and predictable properties by discovering how to engineer graphene structure on an atomic level.
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
A human enzyme can biodegrade graphene
Graphene Flagship partners discovered that a natural human enzyme can biodegrade graphene.
More Graphene News and Graphene Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab