Nav: Home

Graphene plasmons reach the infrared

November 14, 2016

WASHINGTON - Graphene's unique properties can be both a blessing and a curse to researchers, especially to those at the intersection of optical and electronic applications. These single-atom thick sheets feature highly mobile electrons on their flexible profiles, making them excellent conductors, but in general graphene sheets do not interact with light efficiently.

Problematic for shorter wavelength light, photons in the near infrared region of the spectrum, where telecommunication applications become realizable. In a paper published this week in the journal Optics Letters, from The Optical Society (OSA), researchers at the Technical University of Denmark have demonstrated, for the first time, efficient absorption enhancement at a wavelength of 2 micrometers by graphene, specifically by the plasmons of nanoscale graphene disks.

Much like water ripples arising from the energy of a dropped pebble, electronic oscillations can arise in freely moving conduction electrons by absorbing light energy. The resulting collective, coherent motions of these electrons are called plasmons, which also serve to amplify the strength of the absorbed light's electric field at close proximity. Plasmons are becoming increasingly commonplace in various optoelectronic applications where highly conductive metals can be easily integrated.

Graphene plasmons, however, face an extra set of challenges unfamiliar to the plasmons of bulk metals. One of these challenges is the relatively long wavelength needed to excite them. Many efforts taking advantage of the enhancing effects of plasmons on graphene have demonstrated promise, but for low energy light.

"The motivation of our work is to push graphene plasmons to shorter wavelengths in order to integrate graphene plasmon concepts with existing mature technologies," said Sanshui Xiao, associate professor from the Technical University of Denmark.

To do so, Xiao, Wang and their collaborators took inspiration from recent developments at the university's Center of Nanostructured Graphene (CNG), where they demonstrated a self-assembly method resulting in large arrays of graphene nanostructures. Their method primarily uses geometry to bolster the graphene plasmon effects at shorter wavelengths by decreasing the size of the graphene structures.

Using lithographic masks prepared by a block copolymer based self-assembly method, the researchers made arrays of graphene nanodisks. They controlled the final size of the disks by exposing the array to oxygen plasma which etched away at the disks, bringing the average diameter down to approximately 18 nm. This is approximately 1000 times smaller than the width of a human hair.

The array of approximately 18 nm disks, resulting from 10 seconds of etching with oxygen plasma, showed a clear resonance with 2 micrometer wavelength light, the shortest wavelength resonance ever observed in graphene plasmons.

An assumption might be that longer etching times or finer lithographic masks, and therefore smaller disks, would result in even shorter wavelengths. Generally speaking this is true, but at 18 nm the disks already start requiring consideration of atomic details and quantum effects.

Instead, the team plans to tune graphene plasmon resonances at smaller scales in the future using electrical gating methods, where the local concentration of electrons and electric field profile alter resonances.

Xiao said, "To further push graphene plasmons to shorter wavelengths, we plan to use electrical gating. Instead of graphene disks, graphene antidots (i.e. graphene sheets with regular holes) will be chosen because it is easy to implement a back-gating technique."

There are also fundamental limits to the physics that prevent shortening the graphene plasmon resonance wavelength with more etching. "When the wavelength becomes shorter, the interband transition will soon play a key role, leading to broadening of the resonance. Due to weak coupling of light with graphene plasmons and this broadening effect, it will become hard to observe the resonance feature," Xiao explained.
-end-
This project is supported by Danish National Research Foundation Center for Nanostructured Graphene (DNRF103).

Paper: Z. Wang, T. Li, K. Almdal, N. Mortensen, S. Xiau and S. Ndoni, "Experimental demonstration of graphene plasmons working close to the near-infrared window," Opt. Lett. 41, 5345-5348. DOI: 10.1364/OL.41.005345

About Optics Letters

Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals and fiber optics.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contacts:
Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

Research Contact:
Sanshui Xiao
saxi@fotonik.dtu.dk

The Optical Society

Related Graphene Articles:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.
Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.
Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.
Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.
New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).
How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.
Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.
How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.
More Graphene News and Graphene Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.