Nav: Home

Forest fires in Sierra Nevada driven by past land use

November 14, 2016

Forest fire activity in California's Sierra Nevada since 1600 has been influenced more by how humans used the land than by climate, according to new research led by University of Arizona and Penn State scientists.

For the years 1600 to 2015, the team found four periods, each lasting at least 55 years, where the frequency and extent of forest fires clearly differed from the time period before or after.

However, the shifts from one fire regime to another did not correspond to changes in temperature or moisture or other climate patterns until temperatures started rising in the 1980s.

"We were expecting to find climatic drivers," said lead co-author Valerie Trouet, a UA associate professor of dendrochronology. "We didn't find them."

Instead, the team found the fire regimes corresponded to different types of human occupation and use of the land: the pre-settlement period to the Spanish colonial period; the colonial period to the California Gold Rush; the Gold Rush to the Smokey Bear/ fire suppression period; and the Smokey Bear/fire suppression era to present.

"The fire regime shifts we see are linked to the land-use changes that took place at the same time," Trouet said.

"We knew about the Smokey Bear effect -- there had been a dramatic shift in the fire regime all over the Western U.S. with fire suppression. We didn't know about these other earlier regimes," she said. "It turns out humans -- through land-use change -- have been influencing and modulating fire for much longer than we anticipated."

Finding that fire activity and human land use are closely linked means people can affect the severity and frequency of future forest fires through managing the fuel buildup and other land management practices -- even in the face of rising temperatures from climate change, she said.

The team's paper, "Socio-Ecological Transitions Trigger Fire Regime Shifts and Modulate Fire-Climate Interactions in the Sierra Nevada, USA 1600-2015 CE," is scheduled for publication in the online Early Edition of the Proceedings of the National Academy of Sciences the week of Nov. 14.

Trouet's co-authors are Alan H. Taylor of Penn State, Carl N. Skinner of the U.S. Forest Service in Redding, California, and Scott L. Stephens of the University of California, Berkeley.

Initially, the researchers set out to find which climate cycles, such as the El Niño/La Niña cycle or the longer Pacific Decadal Oscillation, governed the fire regime in California's Sierra Nevada.

The team combined the fire history recorded in tree rings from 29 sites all along the Sierra Nevada with a 20th-century record of annual area burned. The history spanned the years 1600 to 2015. However, when large shifts in the fire history were compared to past environmental records of temperature and moisture, the patterns didn't match.

Other researchers had already shown that in the Sierra, there was a relationship between forest fire activity and the amount of fuel buildup. Team members wondered whether human activity over the 415-year period had changed the amount of fuel available for fires.

By using a technique called regime shift analysis, the team found four distinct time periods that differed in forest fire activity. The first was 1600 to 1775. After 1775, fire activity doubled. Fire activity dropped to pre-1775 levels starting in 1866. Starting in 1905, fire activity was less frequent than any previous time period. In 1987, fire activity started increasing again.

However, the frequency of forest fires did not closely track climatic conditions, particularly after 1860.

The researchers reviewed historical documents and other evidence and found the shifting patterns of fire activity most closely followed big changes in human activity in the region.

Before the Spanish colonization of California, Native Americans regularly set small forest fires. The result was a mosaic of burned and unburned patches, which reduced the amount of fuel available to fires and limited the spread of any particular fire.

However, once the Spanish arrived in 1769, Native American populations rapidly declined because of disease and other causes. In addition, the Spanish government banned the use of fire. Without regular fires, fuels built up, leading to more and larger fires.

The influx of people to California during the Gold Rush that began in 1848 reduced fire activity. The large numbers of livestock brought by the immigrants grazed on the grasses and other plants that would otherwise have been fuel for forest fires.

In 1904, the U.S. government established a fire suppression policy on federal lands. After that, fire activity dropped to its lowest level since 1600.

Starting in the 1980s, as the climate warms, fire frequency and severity has increased again.

Fires now can be "bad" fires because of a century or more of fire suppression, according to lead co-author Taylor, a professor of geography at Penn State.

"It is important for people to understand that fires in the past were not necessarily the same as they are today," Taylor said. "They were mostly surface fires. Today we see more canopy-killing fires."

Even in the face of global warming, people can affect the level of forest fire activity by managing the fuel available and other aspects of human land use, Trouet said.

"There has to be a consideration of both people and climate to predict and plan for future fire activity," Taylor said.
-end-
The U.S. Forest Service, the George H. Deike, Jr. Research Endowment Fund, the U.S. Geological Survey and the Swiss National Science Foundation funded the research.

Researcher contact:

Valerie Trouet
University of Arizona
520-626-8004
trouet@ltrr.arizona.edu
Languages spoken: French, German, Dutch

Alan Taylor
Penn State
814-865-1509
aht1@psu.edu

Media contact:

Mari N. Jensen
University of Arizona
520-626-9635
mnjensen@email.arizona.edu

A'ndrea Elyse Messer
Penn State
814-865-9481
aem1@psu.edu

University of Arizona

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.