Nav: Home

Researchers use acoustic waves to move fluids at the nanoscale

November 14, 2016

A team of mechanical engineers at the University of California San Diego has successfully used acoustic waves to move fluids through small channels at the nanoscale. The breakthrough is a first step toward the manufacturing of small, portable devices that could be used for drug discovery and microrobotics applications. The devices could be integrated in a lab on a chip to sort cells, move liquids, manipulate particles and sense other biological components. For example, it could be used to filter a wide range of particles, such as bacteria, to conduct rapid diagnosis.

The researchers detail their findings in the Nov. 14 issue of Advanced Functional Materials. This is the first time that surface acoustic waves have been used at the nanoscale.

The field of nanofluidics has long struggled with moving fluids within channels that are 1000 times smaller than the width of a hair, said James Friend, a professor and materials science expert at the Jacobs School of Engineering at UC San Diego. Current methods require bulky and expensive equipment as well as high temperatures. Moving fluid out of a channel that's just a few nanometers high requires pressures of 1 megaPascal, or the equivalent of 10 atmospheres.

Researchers led by Friend had tried to use acoustic waves to move the fluids along at the nano scale for several years. They also wanted to do this with a device that could be manufactured at room temperature.

After a year of experimenting, post-doctoral researcher Morteza Miansari, now at Stanford, was able to build a device made of lithium niobate with nanoscale channels where fluids can be moved by surface acoustic waves. This was made possible by a new method Miansari developed to bond the material to itself at room temperature. The fabrication method can be easily scaled up, which would lower manufacturing costs. Building one device would cost $1000 but building 100,000 would drive the price down to $1 each.

The device is compatible with biological materials, cells and molecules.

Researchers used acoustic waves with a frequency of 20 megaHertz to manipulate fluids, droplets and particles in nanoslits that are 50 to 250 nanometers tall. To fill the channels, researchers applied the acoustic waves in the same direction as the fluid moving into the channels. To drain the channels, the sound waves were applied in the opposite direction.

By changing the height of the channels, the device could be used to filter a wide range of particles, down to large biomolecules such as siRNA, which would not fit in the slits. Essentially, the acoustic waves would drive fluids containing the particles into these channels. But while the fluid would go through, the particles would be left behind and form a dry mass. This could be used for rapid diagnosis in the field.
-end-


University of California - San Diego

Related Nanoscale Articles:

Discovery will allow more sophisticated work at nanoscale
The movement of fluids through small capillaries and channels is crucial for processes ranging from blood flow through the brain to power generation and electronic cooling systems, but that movement often stops when the channel is smaller than 10 nanometers.
Valley-Hall nanoscale lasers
Topological photonics allows the creation of new states of light.
Dynamics of DNA replication revealed at the nanoscale
Using super-resolution technology a University of Technology Sydney led team has directly visualised the process of DNA replication in single human cells.
House cleaning on the nanoscale
A team of scientists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) has developed a novel mechanical cleaning method for surfaces on the nanoscale.
As electronics shrink to nanoscale, will they still be good as gold?
As circuit interconnects shrink to nanoscale, will the pressure caused by thermal expansion when current flows through wires cause gold to behave more like a liquid than a solid -- making nanoelectronics unreliable?
A joint venture at the nanoscale
Scientists at Argonne National Laboratory report fabricating and testing a superconducting nanowire device applicable to high-speed photon counting.
Bending diamond at the nanoscale
A team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least.
Creating a nanoscale on-off switch for heat
Researchers create a polymer thermal regulator that can quickly transform from a conductor to an insulator, and back again.
Magnetic tuning at the nanoscale
Physicists from the German research center Helmholtz-Zentrum Dresden-Rossendorf (HZDR) are working to produce engineered magnetic nanostructures and to tailor material properties at the nanoscale.
Scientists can now control thermal profiles at the nanoscale
Scientists have designed and tested an experimental system that uses a near-infrared laser to actively heat two gold nanorod antennae to different temperatures.
More Nanoscale News and Nanoscale Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.