Nav: Home

Long-sought genetic model of common infant leukemia described

November 14, 2016

After nearly two decades of unsuccessful attempts, researchers from the University of Chicago Medicine and the Cincinnati Children's Hospital Medical Center have created the first mouse model for the most common form of infant leukemia. Their discovery, published in the Nov. 14, 2016, issue of Cancer Cell, could hasten development and testing of new drug therapies.

Pro-B acute lymphoblastic leukemia (ALL) with the (4;11) translocation is responsible for about 70 percent of infant and 10 percent of both childhood and adult acute lymphoblastic leukemias. The new mouse model replicates the human genetic flaw that causes this disease, making it much easier to study.

This subtype of leukemia results from a genetic fusion t(4;11), known as a translocation. This combines parts of two separate genes. One of those genes, MLL (short for mixed-lineage leukemia), comes from chromosome 11. The other fragment, AF4 (short for ALL fused gene) from chromosome 4. The hybrid MLL-AF4 gene results in leukemia.

Children and adults with this disease produce vast numbers of dysfunctional blood cells, which eventually crowd out functional cells. MLL-AF4 leukemia has a dismal prognosis, among the worst of any subset of acute leukemia.

"For 20 years, scientists have repeatedly tried and consistently failed to make a model of MLL-AF4 Pro-B acute lymphoblastic leukemia," said Michael Thirman, MD, Associate Professor of Medicine at the University of Chicago. "Even though we understood the basic genetic flaw, no one had been able create a mouse model that mimicked the human disease, which is crucial for evaluating potential therapies."

That frustrated many researchers, who shifted their focus to test alternative hypotheses on the causes of this leukemia or refocused their laboratories to study different aspects of this disease.

Thirman's team, including longtime colleague Roger Luo, PhD, began working on this problem "years ago," he said, and stayed with it. They quickly identified two hurdles.

The first was a problem with the retrovirus that scientists used to insert the leukemia-causing gene into mouse cells. That gene, acquired from leukemia patients, consisted of a human gene fragment from MLL linked to the human fragment from AF4.

"We soon discovered that the virus wasn't working," Thirman explained. "We knew that certain parts of human DNA can decrease viral titers. So we switched from the human version of AF4 to the mouse version, Af4, which is slightly different. This increased viral titers 30 fold."

That worked, but it led to hurdle two. The mice injected with virus transporting MLL-Af4 developed leukemia, but it was the wrong kind. They developed acute myeloid instead of acute lymphoblastic leukemia. "Despite the use of lymphoid conditions," the study authors wrote, "no lymphoid leukemia was observed."

Next, they collaborated with James Mulloy, PhD, at Cincinnati Children's Hospital Medical Center, whose graduate student Shan Lin inserted the fused MLL-Af4 gene into human CD34 cells, derived from cord or peripheral blood from volunteer donors. They transferred those cells to mice with immune systems that permit the growth of human cells. This time, the mice developed Pro-B ALL, identical to the leukemia found in humans.

"The model worked perfectly," Thirman said. Within 22 weeks, all of the mice developed exactly the same type of leukemia as observed in patients.

Expression of MLL-Af4 in human cells "recapitulates the pro-B ALL observed in patient with t(4:11) as shown by immunophenotype, chromatin targeting of the fusion, nuclear complex formation, and gene expression signatures," the authors wrote. "It mimics the disease found in humans both phenotypically and molecularly."

"The differences in the type of leukemia that developed using mouse versus human cells were striking," said Mulloy. "Researchers need to consider these differences carefully when choosing which model to use to mimic human disease. The available evidence now indicates that the approaches are not equivalent."

They conclude that "our MLL-Af4 model will be a valuable tool to study this most prevalent MLL-fusion leukemia with such a poor prognosis."

However, there is more work to be done. "MLL fusion disease is not a single genetic entity," the authors note. "Each has its own genetic and biological features associated with particular fusion partners." This highlights the need for "more models specific to each fusion. Our MLL-Af4 model will be a valuable tool."
-end-
The National Institutes of Health, the United States Public Health Service, Cancer Free Kids, the American Society of Hematology, the Jerome Thrall Memorial Fund, the Leukemia and Lymphoma Society, the F H Paschen Fund, Bloodwise, and the Kay Kendall Leukemia Fund supported this study.

Additional authors were Shan Lin, Mark Wunderlich, Ahmad Rayes, Mark Althoff, Maureen O'Brien and Amom Meetei from Cincinnati Children's Hospital Medical Center; Roger Luo, Toshihiko Imamura, Joseph Kaberlein and John Anastasi from the University of Chicago; Anetta Ptasinska and Constanze Bonifer from the University of Birmingham, UK; and Jon Kerry and Thomas Milne from the University of Oxford, UK.

University of Chicago Medical Center

Related Leukemia Articles:

Nanoparticle for overcoming leukemia treatment resistance
One of the largest problems with cancer treatment is the development of resistance to anticancer therapies.
Key gene in leukemia discovered
Acute myeloid leukemia (AML) is one of the most common forms of blood cancer among adults and is associated with a low survival rate, and leads to the inhibition of normal blood formation.
Vitamin B6, leukemia's deadly addiction
Researchers from CSHL and Memorial Sloan Kettering Cancer Center have discovered how Acute Myeloid Leukemia is addicted to vitamin B6.
Artificial intelligence tracks down leukemia
Artificial intelligence can detect one of the most common forms of blood cancer - acute myeloid leukemia -- with high reliability.
Milestone reached in new leukemia drug
Using a chemical compound called YKL-05-099, a team of cancer researchers from CSHL and the Dana Farber Institute was able to target the Salt-Inducible Kinase 3 (SIK3) pathway and extend survival in mice with MLL leukemia.
The drug combination effective against bovine leukemia
Scientists have succeeded in reducing levels of the bovine leukemia virus (BLV) in cows with severe infections by combining an immune checkpoint inhibitor and an enzyme inhibitor.
Towards a safer treatment for leukemia
An international team of researchers at VIB-KU Leuven, Belgium, the UK Dementia Institute and the Children's Cancer Institute, Australia, have found a safer treatment for a specific type of leukemia.
Research paves way for new source for leukemia drug
Chemistry researchers have patented a method for making anti-leukemia compounds that until now have only been available via an Asian tree that produces them.
An atlas of an aggressive leukemia
A team of researchers led by Bradley Bernstein at the Ludwig Center at Harvard has used single-cell technologies and machine learning to create a detailed 'atlas of cell states' for acute myeloid leukemia (AML) that could help improve treatment of the aggressive cancer.
Finding second hits to knock out leukemia
Targeted drugs are a cornerstone of personalized medicine, yet come with important drawbacks.
More Leukemia News and Leukemia Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.