Nav: Home

UH Cancer Center researcher finds new driver of an aggressive form of brain cancer

November 14, 2016

University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age. The discovery can help researchers create novel targeted therapies potentially reducing deaths from this devastating cancer.

"New treatment options for brain cancer patients are desperately needed," said Joe W. Ramos, UH Cancer Center deputy director and lead researcher on the study. "Treatment options include chemotherapy in combination with radiation, but they only prolong a patient's life by a few months."

Glioblastoma remains a lethal cancer with only a 14-month average survival rate after initial diagnosis.

The study published in Oncotarget reveals that a protein called RSK2 is increased in many patients with glioblastoma. The protein pushes glioblastoma cells into surrounding healthy brain tissue. The invasion of these cells throughout the brain makes it difficult to remove the tumor by surgery, which contributes to high recurrence and poor survival rates in patients. The invading glioblastoma cells are less sensitive to current standard therapies. The research team found that inhibiting RSK2 stops invasion of the tumor cells and enhances the effectiveness of standard chemotherapy in tumor cells obtained from patients.

"This study paves the way for development of new brain cancer therapies focused on RSK2 inhibitors for brain invasion," said co-author Santosh Kesari, chair of Department of Translational Neurosciences and Neurotherapeutics of the John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center.

"The next steps include identifying better compounds to target the RSK2 protein.

We are hoping to discover a powerful new drug to treat this aggressive brain cancer," said Ramos.

The findings resulted from several years of collaboration among the labs of Ramos and Michelle Matter at the UH Cancer Center, Kesari at the John Wayne Cancer Institute, and Dirk Geerts of Erasmus University Medical Center in the Netherlands.

"The new discovery can potentially lead to a new class of drugs to treat not only brain cancers, but other invasive cancers as well. With about 60 new cases of brain cancer diagnosed every year in Hawai'i, and about 40 deaths, an effective treatment can help many patients in our state," said Randall Holcombe, UH Cancer Center director.
-end-
Publication

https://goo.gl/UZK4UK
DOI: 10.18632/oncotarget.13084

The University of Hawai'i Cancer Center through its various activities, cancer trial patients and their guests, and other visitors adds more than $54 million to the O'ahu economy. This is equivalent to supporting 776 jobs. It is one of only 69 research institutions designated by the National Cancer Institute. Affiliated with the University of Hawai'i at Mānoa, the Center is dedicated to eliminating cancer through research, education, and improved patient care. Learn more at http://www.uhcancercenter.org. Like us on Facebook at http://www.facebook.com/UHCancerCenter. Follow us on Twitter @UHCancerCenter.

University of Hawaii Cancer Center

Related Glioblastoma Articles:

Molecules responsible for radio-resistant glioblastoma identified
Scientists have identified key molecules that mediate radioresistance in glioblastoma multiforme; these molecules are a potential target for the treatment of this brain cancer.
Study suggests new approach to improve radiation therapy resistance in glioblastoma
Laboratory research paves the way for a clinical trial to see if an FDA-approved drug used to prevent organ transplant rejection can work against glioblastoma, an aggressive type of brain tumor.
Scientists ID gene responsible for deadly glioblastoma
The discovery of the oncogene responsible for glioblastoma could be the brain cancer's Achilles' heel, one researcher says.
Deconstructing glioblastoma complexity reveals its pattern of development
Brain cancers have long been thought of as being resistant to treatments because of the presence of multiple types of cancer cells within each tumor.
Surveillance after surgery does not improve outcomes for patients with glioblastoma
A retrospective study from the University of Missouri School of Medicine and MU Health Care showed patients who underwent surveillance imaging after surgery for brain tumor resection did not have better outcomes than patients who did not have imaging and returned when they felt symptoms of recurrence.
Targeting stromal cells may help overcome treatment resistance in glioblastoma
The deadly brain cancer glioblastoma (GBM) is often resistant to chemotherapy and radiation, but new research shows targeting stromal cells -- the cells that serve as the connective tissue of the organs -- may be an effective way of overcoming that resistance.
Researchers identify immune-suppressing target in glioblastoma
Researchers at The University of Texas MD Anderson Cancer Center have identified a tenacious subset of immune macrophages that thwart treatment of glioblastoma with anti-PD-1 checkpoint blockade, elevating a new potential target for treating the almost uniformly lethal brain tumor.
Ultrasound blasts potent glioblastoma drug into brain tumor
A potent drug for glioblastoma can't be used in patients.
New methodology developed at UPV to monitor patients with glioblastoma
The UPV methodology helps medical doctors know the patients' situation with greater precision; it allows them to obtain several vascular biomarkers directly linked to their survival.
Exploring drug repurposing to treat glioblastoma
MALT1 blockers have long been in clinical use for the treatment of blood cancers.
More Glioblastoma News and Glioblastoma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.