Nav: Home

Virginia Tech, CytImmune Sciences create therapy that curbs toxic chemotherapy effects

November 14, 2016

Virginia Tech scientists have developed a new cancer drug that uses gold nanoparticles created by the biotech firm CytImmune Sciences to deliver paclitaxel -- a commonly used chemotherapy drug directly to a tumor.

Because of the direct targeting, the new effort not only increases the effectiveness of paclitaxel, it also dramatically reduces devastating side effects such as hair loss, nausea, and nerve pain.

CytImmune earlier this year asked David Kingston, a University Distinguished Professor of Chemistry with the Virginia Tech College of Science, to create a paclitaxel derivative that binds to gold-based nanoparticles while in the blood stream, only releasing the drug once it's inside a cancerous tumor. Paclitaxel chemotherapy is widely used to treat breast, ovarian, lung, and colon cancer.

"Paclitaxel side effects occur because the drug is given intravenously and thus is distributed throughout the body, and not just to the tumor," said Kingston, who joined the Virginia Tech Department of Chemistry in 1971. "In addition, the solvent used to allow infusion has its own toxicity. Paclitaxel could be a much more effective drug if it could be targeted directly to the tumor. This would allow each dose to be given without causing significant side effects, and would thus increase the potential for cures."

In other words, for now, delivery of a paclitaxel equals a shotgun with pellets. The blast of killing a tumor results in great collateral damage. Kingston and his team say their delivery method is like a finely tuned rifle, using CytImmune's gold-based nanoparticles as the delivery bullet.

The gold nanoparticles are decorated with both paclitaxel and tumor necrosis factor - a cell-signaling protein commonly called TNF. Gold nanoparticles are known to cling around cancerous tumors. TNF thus binds to the tumor blood vessel cells, ultimately killing them and reducing the high pressure inside the tumor, which prevents paclitaxel from reaching the cancer cells to kill them.

Now, the slowly released paclitaxel that is bound to the gold nanoparticles can reach its targeted cancer cells to kill them.

In early lab tests in treating mouse melanoma, a 2.5 milligram dose of paclitaxel delivered on Kingston's gold nanoparticles vehicle was essentially as effective as a dose of 40 milligrams of paclitaxel by itself.

The delivery method is expected to soon move toward clinical trial, said Kingston.

Findings by Kingston and his team - including Jielu Zhao, a 2016 doctoral graduate in chemistry, now a chemist at Proctor and Gamble, and Shugeng Cao, a former post-doctorate researcher also in chemistry, now an associate professor at the University of Hawaii at Hilo -- were recently published in the scientific journal Bioconjugate Chemistry.

Zhao and Cao carried out the actual synthesis of the paclitaxel derivatives with the designed linkers to allow them to bond to the gold nanoparticles, with Kingston supervising.

"This approach has the potential to be a game-changer in nanoparticle-based drug delivery systems," said Kingston, "since it combines the power of drug targeting by tumor necrosis factor, with the advantages of nanoparticle delivery, including the low toxicity of nanoparticle drugs to normal, healthy tissue."

"By combining the tumor blood vessel destroying activity of TNF with the cancer killing effect of paclitaxel onto CytImmune's tumor-targeted, 'stealth' gold nanoparticles, Dr. Kingston's team and CytImmune's team may have potentially created a new cancer drug that is far more effective and less toxic to the human body," said Lawrence Tamarkin, chief executive officer at CytImmune.

Work on the new drug was split between Virginia Tech's main Blacksburg campus and CytImmune's Rockville, Maryland, headquarters. Kingston has teamed with CytImmune in the past on tumor-targeting nanomedicine.

Virginia Tech previously has used gold nanoparticles in unrelated anti-cancer research, including the Virginia-Maryland College of Veterinary Medicine which in experiments used gold nanoparticles to collect around tumors found inside a dog, and then utilized a non-ablative laser to target the gold nanoparticles, and thus the tumors. In essence, the veterinary approach killed cancer cells by heating them, versus Kingston's approach directly targeting paclitaxel to tumors via the gold nanoparticles.
-end-


Virginia Tech

Related Cancer Cells Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.
An index measures similarity between cancer cells and pluripotent stem cells
The new methodology measures tumor aggressiveness and the risk of relapse, helping doctors plan treatment, according to Brazilian scientists authors of a paper published in a special issue of the journal Cell.
More Cancer Cells News and Cancer Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.