Nav: Home

Physicists mix waves on superconducting qubits

November 14, 2017

Physicists from the Moscow Institute of Physics and Technology (MIPT) and Royal Holloway, University of London, have demonstrated an effect known as quantum wave mixing on an artificial atom. Their results, published in the journal Nature Communications, could help develop quantum electronics of an entirely new kind.

Researchers from MIPT's Laboratory of Artificial Quantum Systems led by Professor Oleg Astafiev teamed up with their British colleagues to examine a superconducting quantum system, which is physically equivalent to a single atom. Cooled to ultralow temperatures, this device emitted and absorbed single quanta of microwave radiation -- the same way that an atom interacts with photons of light.

Artificial atoms, which are at the heart of this study, are a staple of quantum optics experiments. Physicists use these systems to investigate the processes that are otherwise hard to study, such as the emission and absorption of several photons. Whereas a real atom in a mirror cavity emits light in an arbitrary direction, a superconducting system radiates in a controlled way. This enabled the authors to detect the scattering of several light quanta on an artificial atom, or wave mixing.

In the output of the system described above, the researchers observed both source radiation and electromagnetic waves resulting from its interaction with the artificial atom. The frequencies of these waves were determined by the nature of the excitation involved. This pointed to the effect of quantum wave mixing, which had not been observed in systems of this kind before.

The appeal of superconducting systems goes beyond their capacity to reveal various quantum optical effects. According to the authors of the paper, the artificial atom doubles up as a qubit -- the basic element of a quantum computer. Qubits enable computations using basic units of information different from conventional bits. Whereas a classical memory cell stores either a one or a zero, its quantum analog -- the qubit -- can be in both states at the same time due to a principle known as superposition.

"Our paper reports the findings of an experiment demonstrating unusual wave mixing effects on a single artificial atom in the gigahertz frequency range. We examined a qubit strongly coupled to the electromagnetic field in the transmission line and observed the mixing of the photonic quantum state prepared in the qubit with that of the coherent light in the transmission line," says MIPT doctoral student Aleksei Dmitriev, one of the authors of the study. The physicists point out that the observed effect offers a way of visualizing the quantum state statistics of source photons. This could find application in quantum computing, which has emerged as a hot research field in the recent years.

Reference

Quantum computers are based on the notion that a quantum object is capable of being in multiple states simultaneously. This property allows quantum algorithms to be implemented, enabling researchers to tackle problems that are virtually impossible to solve within a reasonable time frame using classical methods. Besides, quantum effects are already used in secure data transmission channels that make it impossible to intercept information without the sender and receiver knowing.
-end-


Moscow Institute of Physics and Technology

Related Quantum Computing Articles:

New method could enable more stable and scalable quantum computing, Penn physicists report
Researchers from the University of Pennsylvania, in collaboration with Johns Hopkins University and Goucher College, have discovered a new topological material which may enable fault-tolerant quantum computing.
Stanford team brings quantum computing closer to reality with new materials
Quantum computing could outsmart current computing for complex problem solving, but only if scientists figure out how to make it practical.
Computing -- quantum deep
In a first for deep learning, an Oak Ridge National Laboratory-led team is bringing together quantum, high-performance and neuromorphic computing architectures to address complex issues that, if resolved, could clear the way for more flexible, efficient technologies in intelligent computing.
Legacy of brilliant young scientist is a major leap in quantum computing
Researchers from the University of Bristol and Université Libre de Bruxelles have theoretically shown how to write programs for random circuitry in quantum computers.
WSU mathematician breaks down how to defend against quantum computing attacks
WSU mathematician Nathan Hamlin is the author of a new paper that explains how a code he wrote for a doctoral thesis, the Generalized Knapsack Code, could thwart hackers armed with next generation quantum computers.
Protecting quantum computing networks against hacking threats
As we saw during the 2016 US election, protecting traditional computer systems, which use zeros and ones, from hackers is not a perfect science.
Electron-photon small-talk could have big impact on quantum computing
In a step that brings silicon-based quantum computers closer to reality, researchers at Princeton University have built a device in which a single electron can pass its quantum information to a particle of light.
Bridging the advances in AI and quantum computing for drug discovery and longevity research
Insilico Medicine Inc. and YMK Photonics Inc. announced a research collaboration and business cooperation to develop photonics quantum computing and accelerated deep learning techniques for drug discovery, biomarker development and aging research.
New technique for creating NV-doped nanodiamonds may be boost for quantum computing
Researchers at North Carolina State University have developed a new technique for creating NV-doped single-crystal nanodiamonds, only four to eight nanometers wide, which could serve as components in room-temperature quantum computing technologies.
Exploring defects in nanoscale devices for possible quantum computing applications
Researchers at Tokyo Institute of Technology in collaboration with the University of Cambridge have studied the interaction between microwave fields and electronic defect states inside the oxide layer of field-effect transistors at cryogenic temperatures.

Related Quantum Computing Reading:

Quantum Computation and Quantum Information: 10th Anniversary Edition
by Michael A. Nielsen (Author), Isaac L. Chuang (Author)

Quantum Computing for Computer Scientists
by Noson S. Yanofsky (Author), Mirco A. Mannucci (Author)

Quantum Computing: A Gentle Introduction (Scientific and Engineering Computation)
by Eleanor G. Rieffel (Author), Wolfgang H. Polak (Author), William Gropp (Series Editor), Ewing Lusk (Series Editor)

Quantum Computing since Democritus
by Scott Aaronson (Author)

An Introduction to Quantum Computing
by Phillip Kaye (Author), Raymond Laflamme (Author), Michele Mosca (Author)

Quantum Computer Science: An Introduction
by N. David Mermin (Author)

Problems And Solutions In Quantum Computing And Quantum Information (4Th Edition)
by Willi-Hans Steeb (Author), Yorick Hardy (Author)

Quantum Computing From The Ground Up
by Riley Tipton Perry (Author)

Quantum Computing for Everyone (The MIT Press)
by Chris Bernhardt (Author)

Quantum Computing Explained
by David Mcmahon (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.