Nav: Home

Research finds injury from contact sport has harmful, though temporary effect on memory

November 14, 2017

McMaster University neuroscientists studying sports-related head injuries have found that it takes less than a full concussion to cause memory loss, possibly because even mild trauma can interrupt the production of new neurons in a region of the brain responsible for memory.

Though such losses are temporary, the findings raise questions about the long-term effects of repeated injuries and the academic performance of student athletes.

The researchers spent months following dozens of athletes involved in high-contact sports such as rugby and football, and believe that concussions and repetitive impact can interrupt neurogenesis -- or the creation of new neurons -- in the hippocampus, a vulnerable region of the brain critical to memory.

The findings were presented today (Tuesday, November 14th) at the Society for Neuroscience's annual conference, Neuroscience 2017, in Washington D.C.

"Not only are newborn neurons critical for memory, but they are also involved in mood and anxiety," explains Melissa McCradden, a neuroscience postdoctoral fellow at McMaster University who conducted the work. "We believe these results may help explain why so many athletes experience difficulties with mood and anxiety in addition to memory problems."

For the study, researchers administered memory tests and assessed different types of athletes in two blocks over the course of two years. In the first block, they compared athletes who had suffered a concussion, uninjured athletes who played the same sport, same-sport athletes with musculoskeletal injuries, and healthy athletes who acted as a control group.

Concussed athletes performed worse on the memory assessment called a mnemonic similarity test (MST), which evaluates a person's ability to distinguish between images that are new, previously presented, or very similar to images previously presented.

In the second study, rugby players were given the MST before the season started, halfway through the season, and one month after their last game. Scores for injured and uninjured athletes alike dropped midseason, compared to preseason scores, but recovered by the postseason assessment.

Both concussed and non-concussed players showed a significant improvement in their performance on the test after a reprieve from their sport.

For the concussed athletes, this occurred after being medically cleared to return to full practice and competition. For the rugby players, they improved after approximately a month away from the sport.

If neurogenesis is negatively affected by concussion, researchers say, exercise could be an important tool in the recovery process, since it is known to promote the production of neurons. A growing body of new research suggests that gentle exercise which is introduced before a concussed patient is fully symptom free, is beneficial.

"The important message here is that the brain does recover from injury after a period of reprieve," says McCradden. "There is a tremendous potential for the brain to heal itself."
-end-
McMaster provides a high definition broadcast studio that can connect with any television broadcaster around the world. To book an interview please contact:

Michelle Donovan
Manager, Media Relations
McMaster University
905-525-9140, ext. 22869
905-512-8548 (c)
donovam@mcmaster.ca

Wade Hemsworth
Manager, Media Relations
McMaster University
905-525-9140, ext. 27988
289-925-8382 (c)
hemswor@mcmaster.ca

McMaster University

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

From Neuron to Brain: A Cellular and Molecular Approach to the Function of the Nervous System, Fourth Edition
by John G. Nicholls (Author), A. Robert Martin (Author), Bruce G. Wallace (Author), Paul A. Fuchs (Author)

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

I of the Vortex: From Neurons to Self
by Rodolfo R. Llinas (Author)

From Neurons to Neighborhoods: An Update: Workshop Summary
by National Research Council (Author), Division of Behavioral and Social Sciences and Education (Author), Institute of Medicine (Author), Youth, and Families Board on Children (Author), Steve Olson (Editor)

Neurons in Action 2: Tutorials and Simulations using NEURON
by John W. Moore (Author), Ann E. Stuart (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#496 Anti-Intellectualism: Down With the Scientist!
This week we get to the bottom of anti-intellectualism. We'll be speaking with David Robson, senior journalist at BBC Future, about misology -- the hatred of reason and argument -- and how it may be connected to distrust of intellectuals. Then we'll speak with Bruno Takahashi, associate professor of environmental journalism and communication at Michigan State University, about how the way we consume media affects our scientific knowledge and how we feel about scientists and the press.