Nav: Home

Innovative and ideal liquid-repellent surfaces developed by HKU scientists

November 14, 2017

On liquid-repellent surfaces, liquid droplets bounce away instead of being stuck. These surfaces are important in many fields, such as water-repellent clothes and anti-fouling kitchenware. Used as drag-reduction coatings for water vehicles, these surfaces can even help with speeding up cargo ships and military equipment so as to save energy. The dream of research and development on liquid-repellents is a structure that has robust liquid repellency, strong mechanical stability, and is inexpensive to produce on a commercial scale. However, the functional outcomes of existing liquid-repellent surfaces have not been satisfactory, because of inadequacies of conventional structural design and fabrication approaches in engineering microstructures and properties of such surfaces.

The challenge was recently overcome by breakthrough research led by Professor Wang Liqiu at the Department of Mechanical Engineering, Faculty of Engineering, the University of Hong Kong (HKU) through the development of a robust liquid-repellent structure and the fabrication of porous surfaces by an innovative microfluidic-droplet-based technique. Materials such as textiles, metals, and glasses covered by a layer of this robust porous surface can then become liquid-repellent. The paper was recently published in academic journal Nature Communications (Zhu P. A., Kong T. T., Tang X. and Wang L. Q. 2017. Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating, Nature Communications 8, 15823). With the new technology developed by the team, clothes would never get wet on rainy days in the future.

The team resolves effectively the conflict between liquid-repellency and mechanical stability by the springtail-cuticle-inspired design of liquid-repellent structures. Springtails are soil-dwelling arthropods whose habitats often experience rain and flooding. As a consequence, springtails evolve their cuticles with strong mechanical durability and robust liquid repellency to resist friction from soil particles and to survive in watery environments, respectively. Inspired by springtail cuticles, the research team designed porous surfaces composed of interconnected honeycomb-like micro-cavities with a re-entrant profile: interconnectivity ensures mechanical stability and re-entrant structure yields robust liquid-repellency.

Robust liquid-repellent structure shows a 21-fold enhancement in mechanical stability


The robust liquid-repellent surfaces repel at least 10 types of liquid, including water, surfactant solutions, oils, and organic solvents and show an astounding over 21-fold enhancement in mechanical stability compared with discrete structures. The porous surfaces are capable of recovering their non-wetting state as well even if micro-cavities are partially wetted by water. The flexible surfaces can also be readily coated onto various objects for liquid-repellency.

Porous surface material just costs about HKD1 per square metre


The research team also developed an innovative microfluidic-droplet-based technique for the fabrication of porous surfaces which is very much similar to shaped-cookies made by baking molds. Here the molds are uniform micron-sized droplets that are produced by microfluidics technology with precise control over their size, structure, and composition. Molded by microfluidic droplets, commercial-scale uniform microstructures are produced at low cost. The material cost is in a range of HKD 0.7 to 1.3 per square metre, only one thousandth of that in purchasing commercialized products such as PTFE water-repellent film. This technique has high accuracy and effectiveness in engineering surface structures, ensured by the precision and controllability of microfluidic-droplet generation that is low in cost and readily scaled up as well.

The breakthrough will change the way liquid-repellent surfaces are fabricated for robust liquid-repellency, strong mechanical stability, and economical production at a commercial scale. It has also paved the way for further progress in creating surface structures by design, and in tailoring their morphology, repellency and mechanical stability to suit a desired application in various fields, including energy, buildings, automobiles, chemical engineering, electronics, environments, bio-medical industry, advanced manufacturing, water vehicle and military equipment.
-end-


The University of Hong Kong

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Basic Machines and How They Work
by Naval Education And Training Program (Author)

Engineering: An Illustrated History from Ancient Craft to Modern Technology (100 Ponderables)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

Practical Electronics for Inventors, Fourth Edition
by Paul Scherz (Author), Simon Monk (Author)

101 Things I Learned® in Engineering School
by John Kuprenas (Author), Matthew Frederick (Author)

Mechanical Engineering Reference Manual for the PE Exam, 13th Ed
by Michael R. Lindeburg PE (Author)

Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

Civil Engineering Reference Manual for the PE Exam, 15th Ed
by Michael R. Lindeburg PE (Author)

The Engineering Book: From the Catapult to the Curiosity Rover, 250 Milestones in the History of Engineering (Sterling Milestones)
by Marshall Brain (Author)

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
by Richard G Budynas (Author), Keith J Nisbett (Author)

Basics of Mechanical Engineering
by R K Singal (Author), Mridul Singal (Author), Rishi Singal (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...