Nav: Home

Low dose, constant drip: Pharmaceutical & personal care pollution impacts aquatic life

November 14, 2017

(Millbrook, NY) Traditional toxicity testing underestimates the risk that pharmaceutical and personal care product pollution poses to freshwater ecosystems. Criteria that account for ecological disruption - not just organism death - are needed to protect surface waters, which are under pressure from a growing population and escalating synthetic chemical use. So reports a new study published this week in Elementa.

Wastewater treatment plants are not designed to remove the chemicals found in pharmaceuticals and personal care products (PPCPs). Instead, these chemicals enter waterways where their effects on aquatic ecosystems are largely unknown.

Emma Rosi, an aquatic ecologist at the Cary Institute of Ecosystem Studies and coauthor on the study explains, "Some 15 years ago, a landmark study found pharmaceuticals and personal care products in 80% of streams sampled across the US. Additional research confirmed similar patterns globally. The majority of these compounds are understudied, unregulated, and/or deemed 'low risk'. Yet there is a growing body of knowledge that PPCPs disrupt aquatic ecosystems, even at low concentrations."

For example, when exposed to antidepressants, fish exhibit altered feeding behavior and can become more aggressive. SSRIs have been found to make tadpoles more susceptible to predation. Antidepressants and amphetamines can alter the timing of aquatic insect emergence.

Erinn Richmond, a PhD candidate in the Water Studies Centre at Monash University and lead author on the study notes, "The bottom line is that even at low doses, PPCPs have the potential to disrupt the ecology of a system, leading to broader environmental consequences. Many of these compounds are pseudo-persistent - because we are constantly adding them to our rivers and streams - but there are few studies on how they impact aquatic ecosystems."

To assess toxicity, chemical compounds are evaluated with an 'LC50' test. Organisms of a single species are exposed to increasingly high concentrations of a substance until 50% of the experimental 'population' dies. This concentration is used to set environmentally acceptable limits. "Single-organism lethality does not account for the diversity of species in nature, bioaccumulation, or non-lethal but disruptive impacts that compromise ecosystems," explains co-author A.J. Reisinger of the University of Florida, Gainesville.

Traditional toxicology tests do not account for the effects of compounds mixing. The reality is that PPCPs rarely appear singly in the environment. Consider the lengthy ingredient list on products like toothpaste, deodorant, shampoo, ibuprofen, or antihistamines. This synthetic chemical cocktail flows into waterways, where the compounds are free to interact in ways that were never tested in a lab.

Rosi explains, "If you went to your doctor and mentioned that you were taking 30 different drugs, your doctor would likely tell you to stop. And yet, this is what's happening in the environment. The bugs, fish, plants, and algae - they are all exposed to this mixture of drugs and we don't know the impacts. We should think about how pharmaceuticals disrupt ecosystems, not just whether they kill things."

The concept of ecologically disrupting compounds mirrors that of endocrine disruptors. Take for example bisphenol A (BPA), a chemical found in plastic products which can act as a hormone in the human body. If someone consumed BPA, it would take a large amount of the compound for it to be lethal. However, even in low concentrations, it can interfere with the function of the endocrine system and cause adverse health effects.

John Kelly, a co-author from Loyola University Chicago, explains, "Like endocrine disruptors, which impact the human body in low, non-lethal concentrations, we argue that low but persistent concentrations of ecological disruptors cause significant, yet not immediately lethal, effects in the environment."

The paper's authors outline the need for testing that takes into account PPCPs' potential to disrupt ecological processes across multiple components of aquatic ecosystems.

One way to do this is by adding low concentrations of pharmaceuticals to artificial stream communities which include algae, bacteria, and insects - an approach which Rosi and collaborators already employ. Rosi explains, "We monitor the system for any changes. We're not looking to see if all the bugs die, but do they emerge sooner? Does the bacterial community look significantly different? Does the rate of photosynthesis change? Those things are signs of ecological disruption."

While this testing is key to better understanding the ecological effects of PPCPs, with so many different chemicals entering the environment, it would be impossible to test and regulate them all. Instead, Rosi says, "We need to focus on the source. Chemicals that we use in our everyday lives enter the waste stream, which is not treated sufficiently. There is a dire need to support our wastewater infrastructure and treatment facilities. Reducing use of products containing these compounds is also important."

Richmond concludes: "We want scientists and funding agencies to undertake research focusing on the effects of PPCPs in aquatic environments and the extent to which these substances disrupt ecological processes. Ultimately, we hope that a greater scientific understanding of this issue will lead to increased public awareness of the need to keep these compounds out of our ecosystems."
Read the article online:


Erinn K. Richmond - PhD candidate - Water Studies Centre, School of Chemistry, Monash University (Principal investigator)

Michael R. Grace - Associate Professor - Water Studies Centre, School of Chemistry, Monash University (Co-principal investigator)

John J. Kelly - Professor - Department of Biology, Loyola University Chicago (Co-principal investigator)

Alexander J. Reisinger - Assistant Professor - Soil and Water Sciences Department, University of Florida, Gainesville (Co-principal investigator)

Emma J. Rosi - Senior Scientist - Cary Institute of Ecosystem Studies (Co-principal investigator)

David M. Walters - Research Ecologist - United States Geological Survey (Co-principal investigator)

The Cary Institute of Ecosystem Studies is one of the world's leading independent environmental research organizations. Areas of expertise include disease ecology, forest and freshwater health, climate change, urban ecology, and invasive species. Since 1983, Cary Institute scientists have produced the unbiased research needed to inform effective management and policy decisions.

Cary Institute of Ecosystem Studies

Related Ecosystems Articles:

Rethinking role of viruses in coral reef ecosystems
Viruses are thought to frequently kill their host bacteria, especially at high microbial density.
Sequestering blue carbon through better management of coastal ecosystems
Focusing on the management of carbon stores within vegetated coastal habitats provides an opportunity to mitigate some aspects of global warming.
Tiny bacterium provides window into whole ecosystems
MIT research on Prochlorococcus, the most abundant life form in the oceans, shows the bacteria's metabolism evolved in a way that may have helped trigger the rise of other organisms, to form a more complex marine ecosystem with overall greater biomass.
Road salt alternatives alter aquatic ecosystems
Organic additives found in road salt alternatives -- such as those used in the commercial products GeoMelt and Magic Salt -- act as a fertilizer to aquatic ecosystems, promoting the growth of algae and organisms that eat algae, according to new research published today in the Journal of Applied Ecology.
Marine ecosystems show resilience to climate disturbance
Climate change is one of the most powerful stressors threatening marine biomes.
Ecosystems in the southeastern US are vulnerable to climate change
At least several southeastern US ecosystems are highly vulnerable to the impacts of present and future climate change, according to two new USGS reports on research conducted by scientists with Interior Department's Southeast Climate Science Center.
Islands and their ecosystems
Juliano Sarmento Cabral comes from a country with a tropical-subtropical climate.
Restoring ecosystems -- how to learn from our mistakes
In a joint North European and North American study led by Swedish researcher Christer Nilsson, a warning is issued of underdocumented results of ecological restorations.
Beach replenishment may have 'far reaching' impacts on ecosystems
UC San Diego biologists who examined the biological impact of replenishing eroded beaches with offshore sand found that such beach replenishment efforts could have long-term negative impacts on coastal ecosystems.
Overfishing increases fluctuations in aquatic ecosystems
Overfishing reduces fish populations and promotes smaller sizes in fish.

Related Ecosystems Reading:

How Ecosystems Work (My Science Library)
by Julie K Lundgren (Author)

Looks at the ways that animals and plants live together in a balanced way in distinct ecosystems, as well as the ways that human activity can threaten the balance of those systems. View Details

Ecosystems (Science Readers: Content and Literacy)
by Teacher Created Materials;William B. Rice (Author)

There are different kinds of ecosystems all over the world! An ecosystem is the way that living things in an area behave with each other and use resources like the soil, water, and sun. Learn all about the science behind ecosystems in this fascinating reader! Vibrant images pair with easy-to-read text to keep students engaged from cover to cover. This reader also includes instructions for an engaging science activity where students can conduct their own scientific experiment to see how they can change the balance of something. A helpful glossary and index are also included for additional... View Details

Ecosystems Gr. 5-8 (Ecology & the Environment) - Classroom Complete Press
by Angela Wagner (Author)

Study the different kinds of ecosystems and the life that thrives in them. Our resource introduces students to essential life science concepts in a way that makes it more accessible and easier to understand. Start off by examining the different parts of an ecosystem, including biotic and abiotic things. Explore the idea of population and how it grows. Take this one step further by looking at how ecosystems can change and grow. Identify the roles of producers, consumers and decomposers in an ecosystem. See how food chains work by creating your own food web. Learn about photosynthesis and the... View Details

Exploring Ecosystems with Max Axiom, Super Scientist (Graphic Science)
by Agnieszka Biskup (Author), Tod G Smith (Illustrator)

Follows the adventures of Max Axiom as he explains the science behind ecosystems. Written in graphic-novel format. View Details

Deserts (A True Book)
by Peter Benoit (Author)

This book briefly examines the geology and environment of deserts, as well as the people and animals who make them their homes. View Details

What If There Were No Bees?: A Book About the Grassland Ecosystem (Food Chain Reactions)
by Suzanne Slade (Author), Carol Schwartz (Illustrator)

Grassland ecosystems can be found on nearly every continent. Countless animals and plants live in them. So what difference could the loss of one animal species make? Follow the chain reaction, and discover how important honey bees are. View Details

ecosystem Journal Ruled: Medium Grape Hardcover (ecosystem Series)
by ecosystem (Editor)

Made of 100% post-consumer recycled paper, the ecosystem hardcover journal is a great place to record your ideas, inspirations, plans, and dreams. The books are made of beautiful, smooth, bright-white, eco-friendly paper and include special touches like a back pocket, perforated pages, organic cotton bookmark, and an elastic closure. Plus, an ecosystem journal is 100% made in the USA. In the back of each book, there is an ID number that allows you to track, via, where the components of your book were made and how to... View Details

Ecosystems of California
by Harold Mooney (Editor), Erika Zavaleta (Editor)

This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed.

Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses... View Details

The Kitchen Ecosystem: Integrating Recipes to Create Delicious Meals
by Eugenia Bone (Author)

Paradigm-shifting, The Kitchen Ecosystem will change how we think about food and cooking. Designed to to create and use ingredients that maximize flavor, these 400 recipes are derived from 40 common ingredients--from asparagus to fish to zucchini--used at each stage of its "life cycle": fresh, preserved, and in a main dish.

Seasoned cooks know that the secret to great meals is this: the more you cook, the less you actually have to do to produce a delicious meal. The trick is to approach cooking as a continuum, where each meal draws on elements from a previous one and provides... View Details

Hubbard Brook: The Story of a Forest Ecosystem
by Richard T. Holmes (Author), Gene E. Likens (Author)

A beautifully illustrated overview and synthesis of how scientists have used a living forest as an experimental laboratory for more than 50 years

For more than 50 years, the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire has been one of the most intensely studied landscapes on earth. This book highlights many of the important ecological findings amassed during the long-term research conducted there, and considers their regional, national, and global implications.
Richard T. Holmes and Gene E. Likens, active members of the research... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."