Nav: Home

Are multiple H-coils needed to accurately measure magnetic field strengths?

November 14, 2017

WASHINGTON, D.C., November 14, 2017 -- Is more always better? Researchers from Doshisha University in Kyoto, Japan, sought to find out if that was the case for measuring magnetic field strengths. Their paper, appearing this week in AIP Advances, from AIP Publishing, examines whether a double H-coil method or a single H-coil method is a more accurate way to measure magnetic field strength.

Single sheet testers (SSTs) measure the magnetic properties of electrical steel sheets, amorphous strips, and other metallic specimens. Although it sounds abstract, understanding the magnetic properties of different metals is vital to some of the numerical analysis that makes the electrical devices you use every day.

The magnetic field strength inside the exciting coil of an SST increases the farther away the coil is from the specimen. The researchers proposed that a double H-coil method would not only suppress the gradient of magnetic field inside the exciting coil, but also more accurately detect the magnetic field strength than the standard single-coil method.

To test this theory, the scientists measured the distribution of magnetic field strength by the single H-coil method using four separated H-coils simultaneously. Placing each of these four H-coils at different distances to the surface of the specimen "enables us to evaluate the influence of the position of the H-coil on the measurement accuracy of magnetic properties," wrote the authors. The researchers performed these experiments using both single-yoke type and double-yoke type SSTs designs.

"The major finding of our work is to be able to select the single H-coil method or the double H-coil method depending on the necessary data," said the paper's lead author Ryo Matsubara at Doshisha University. Matsubara and his team found that magnetic field strength and specific total loss (loss of power) increase linearly with the distance of the H-coil from the specimen surface.

"The double H-coil method is effective for the measurement of magnetization properties of [iron]-based amorphous strip as well as electrical steel sheets because it can estimate the surface magnetic field strength more accurately," said the authors in the paper. Therefore, at times when data needs to be more accurate, such as using magnetic field strength in numerical analysis, the more accurate (if more complex) double H-coil method is the logical choice. But if the point of the experiment is to measure the specific total loss in order to determine the quality of the specimen, the single H-coil method can be used without loss of accuracy.
-end-
The article, "Distribution of magnetic field strength inside exciting coil of single sheet tester," is authored by Ryo Matsubara, Yasuhito Takahashi, Koji Fujiwara, Yoshiyuki Ishihara and Daichi Azuma. The article will appear in AIP Advances Nov. 14, 2017 [DOI: 10.1063/1.4993997]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4993997.

ABOUT THE JOURNAL

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See http://aipadvances.aip.org.

American Institute of Physics

Related Magnetic Properties Articles:

Microdevice provides novel method of measuring cell mechanical properties
Researchers from Kumamoto University in Japan have developed a new method of measuring the Young's modulus of a cell.
Gray tin exhibits novel topological electronic properties in 3-D
In a surprising new discovery, alpha-tin, commonly called gray tin, exhibits a novel electronic phase when its crystal structure is strained, putting it in a rare new class of 3-D materials called topological Dirac semimetals (TDSs).
Organic-inorganic heterostructures with programmable electronic properties
Researchers from the University of Strasbourg & CNRS (France), in collaboration with the University of Mons (Belgium), the Max Planck Institute for Polymer Research (Germany) and the Technische Universität Dresden (Germany), have devised a novel supramolecular strategy to introduce tunable 1D periodic potentials upon self-assembly of ad hoc organic building blocks on graphene, opening the way to the realization of hybrid organic-inorganic multilayer materials with unique electronic and optical properties.
Stabilizing soils with sulfates to improve their constructional properties
Stabilization by means of conventional additives cannot be carried out on soils with sulfates because the calcium in these additives adversely reacts with the sulfate present in the soil.
Do cells have exotic vibrational properties?
A little-understood biological property that appears to allow cell components to store energy on their outer edges is the possible key to developing a new class of materials and devices to collect, store and manage energy for a variety of applications, a team of researchers at New Jersey Institute of Technology (NJIT) and Yeshiva University has proposed.
Nano 'sandwich' offers unique properties
Nanoclusters of magnesium oxide sandwiched between layers of graphene make a compound with unique electronic and optical properties, according to researchers at Rice University who built computer simulations of the material.
A new platform to study graphene's electronic properties
IBS scientists model the electronic structure of graphene.
Anticancer properties of mono/di-halogenated coumarins
In the present investigation, mono/di-halogenated coumarins CMRN1-CMRN7 have been synthesized and evaluated for their anticancer activity.
Germanium's semiconducting and optical properties probed under pressure
Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.
Creating new physical properties in materials
A collaborative effort between research groups at the Technical University of Freiberg and the University of Siegen in Germany demonstrates that the physical properties of SrTiO3, or strontium titanate, in its single crystal form can be changed by a relatively simple electrical treatment.

Related Magnetic Properties Reading:

Electrical and Magnetic Properties of Materials (Artech House Materials Science Library)
by Philippe Robert (Author)

Magnetic Properties of Organic Materials
by Paul M. Lahti (Editor)

Asm Ready Reference Electrical and Magnetic Properties of Metals
by J. Gilbert Kaufman (Author)

Modern Magnetic Materials: Principles and Applications
by Robert C. O'Handley (Author)

Magnetic Properties of Materials
by Smit J et al (Author)

Quantum Theory of Magnetism
by Robert M. White (Author)

The Magnetic Properties of Solids (The Structures and Properties of Solids, 6)
by John Crangle (Author)

Magnetic and Other Properties of Oxides and Related Compounds/Magnetische und andere Eigenschaften von Oxiden und verwandten Verbindungen b (Volume 4) (English and German Edition)
by D. Bonnenberg (Author), E.L. Boyd (Author), B.A. Calhoun (Author), V.J. Folen (Author), W. Gräper (Author), A.P. Greifer (Author), C.J. Kriessman (Author), R.A. Lefever (Author), T.R. McGuire (Author), M. Paulus (Author), G.H. Strauss (Author), R. Vautier (Author), H.P.J. Wijn (Author)

Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics
by Andrej Szytula (Author), Janusz Leciejewicz (Author)

Plasma properties and magnetic field structure of the solar corona, based on coordinated Max 1991 observations from SERTS, the VLA, and magnetographs
by National Aeronautics and Space Administration (NASA) (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...