Nav: Home

Are multiple H-coils needed to accurately measure magnetic field strengths?

November 14, 2017

WASHINGTON, D.C., November 14, 2017 -- Is more always better? Researchers from Doshisha University in Kyoto, Japan, sought to find out if that was the case for measuring magnetic field strengths. Their paper, appearing this week in AIP Advances, from AIP Publishing, examines whether a double H-coil method or a single H-coil method is a more accurate way to measure magnetic field strength.

Single sheet testers (SSTs) measure the magnetic properties of electrical steel sheets, amorphous strips, and other metallic specimens. Although it sounds abstract, understanding the magnetic properties of different metals is vital to some of the numerical analysis that makes the electrical devices you use every day.

The magnetic field strength inside the exciting coil of an SST increases the farther away the coil is from the specimen. The researchers proposed that a double H-coil method would not only suppress the gradient of magnetic field inside the exciting coil, but also more accurately detect the magnetic field strength than the standard single-coil method.

To test this theory, the scientists measured the distribution of magnetic field strength by the single H-coil method using four separated H-coils simultaneously. Placing each of these four H-coils at different distances to the surface of the specimen "enables us to evaluate the influence of the position of the H-coil on the measurement accuracy of magnetic properties," wrote the authors. The researchers performed these experiments using both single-yoke type and double-yoke type SSTs designs.

"The major finding of our work is to be able to select the single H-coil method or the double H-coil method depending on the necessary data," said the paper's lead author Ryo Matsubara at Doshisha University. Matsubara and his team found that magnetic field strength and specific total loss (loss of power) increase linearly with the distance of the H-coil from the specimen surface.

"The double H-coil method is effective for the measurement of magnetization properties of [iron]-based amorphous strip as well as electrical steel sheets because it can estimate the surface magnetic field strength more accurately," said the authors in the paper. Therefore, at times when data needs to be more accurate, such as using magnetic field strength in numerical analysis, the more accurate (if more complex) double H-coil method is the logical choice. But if the point of the experiment is to measure the specific total loss in order to determine the quality of the specimen, the single H-coil method can be used without loss of accuracy.
-end-
The article, "Distribution of magnetic field strength inside exciting coil of single sheet tester," is authored by Ryo Matsubara, Yasuhito Takahashi, Koji Fujiwara, Yoshiyuki Ishihara and Daichi Azuma. The article will appear in AIP Advances Nov. 14, 2017 [DOI: 10.1063/1.4993997]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4993997.

ABOUT THE JOURNAL

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See http://aipadvances.aip.org.

American Institute of Physics

Related Magnetic Properties Articles:

Microdevice provides novel method of measuring cell mechanical properties
Researchers from Kumamoto University in Japan have developed a new method of measuring the Young's modulus of a cell.
Gray tin exhibits novel topological electronic properties in 3-D
In a surprising new discovery, alpha-tin, commonly called gray tin, exhibits a novel electronic phase when its crystal structure is strained, putting it in a rare new class of 3-D materials called topological Dirac semimetals (TDSs).
Organic-inorganic heterostructures with programmable electronic properties
Researchers from the University of Strasbourg & CNRS (France), in collaboration with the University of Mons (Belgium), the Max Planck Institute for Polymer Research (Germany) and the Technische Universität Dresden (Germany), have devised a novel supramolecular strategy to introduce tunable 1D periodic potentials upon self-assembly of ad hoc organic building blocks on graphene, opening the way to the realization of hybrid organic-inorganic multilayer materials with unique electronic and optical properties.
Stabilizing soils with sulfates to improve their constructional properties
Stabilization by means of conventional additives cannot be carried out on soils with sulfates because the calcium in these additives adversely reacts with the sulfate present in the soil.
Do cells have exotic vibrational properties?
A little-understood biological property that appears to allow cell components to store energy on their outer edges is the possible key to developing a new class of materials and devices to collect, store and manage energy for a variety of applications, a team of researchers at New Jersey Institute of Technology (NJIT) and Yeshiva University has proposed.
Nano 'sandwich' offers unique properties
Nanoclusters of magnesium oxide sandwiched between layers of graphene make a compound with unique electronic and optical properties, according to researchers at Rice University who built computer simulations of the material.
A new platform to study graphene's electronic properties
IBS scientists model the electronic structure of graphene.
Anticancer properties of mono/di-halogenated coumarins
In the present investigation, mono/di-halogenated coumarins CMRN1-CMRN7 have been synthesized and evaluated for their anticancer activity.
Germanium's semiconducting and optical properties probed under pressure
Germanium may not be a household name like silicon, its group-mate on the periodic table, but it has great potential for use in next-generation electronics and energy technology.
Creating new physical properties in materials
A collaborative effort between research groups at the Technical University of Freiberg and the University of Siegen in Germany demonstrates that the physical properties of SrTiO3, or strontium titanate, in its single crystal form can be changed by a relatively simple electrical treatment.

Related Magnetic Properties Reading:

Magnetic Properties of Materials
by Smit J et al (Author)

Magnetic materials find an ever-increasing use in a great variety of devices ranging from dc to optical frequencies; another distinction can be made between reversible and irreversible applications. In present-day advanced technology the operation of each device depends critically upon a great number of diverse characteristics of the materials. Thus this book treats the magnetic properties of materials in connection with their applications. In order to increase the readability and limit the use of the book, only those properties and backgrounds which have some practical implication are... View Details


Electronic, Magnetic, and Optical Materials, Second Edition (Advanced Materials and Technologies)
by Pradeep Fulay (Author), Jung-Kun Lee (Author)

This book integrates materials science with other engineering subjects such as physics, chemistry and electrical engineering. The authors discuss devices and technologies used by the electronics, magnetics and photonics industries and offer a perspective on the manufacturing technologies used in device fabrication. The new addition includes chapters on optical properties and devices and addresses nanoscale phenomena and nanoscience, a subject that has made significant progress in the past decade regarding the fabrication of various materials and devices with nanometer-scale features.

View Details


Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties (Pt. 2)
by Bretislav Heinrich (Editor), J.A.C. Bland (Editor)

The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work... View Details


Electronic Properties of Materials
by Rolf E. Hummel (Author)

This text on the electrical, optical, magnetic, and thermal properties of materials stresses concepts rather than mathematical formalism. Suitable for advanced undergraduates, it is intended for materials and electrical engineers who want to gain a fundamental understanding of alloys, semiconductor devices, lasers, magnetic materials, and so forth. The book is organized to be used in a one-semester course; to that end each section of applications, after the introduction to the fundamentals of electron theory, can be read independently of the others. Many examples from engineering practice... View Details


Electrical and Magnetic Properties of Materials (Artech House Materials Science Library)
by Philippe Robert (Author)

Book by Robert, Philippe View Details


Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties: Volume 58 (MRS Proceedings)
by B. C. Giessen (Editor), D. E. Polk (Editor), A. I. Taub (Editor)

The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. View Details


Transition Metal Compounds: Transport and Magnetic Properties
by E.R. Schatz (Editor)

View Details


Dynamical Properties of Solids, Vol. 3: Metals, Superconductors, Magnetic Materials, Liquids
by George K. Horton (Author)

The volumes which comprise ``Dynamical Properties of Solids'' provide detailed discussions on all topics of current theoretical and experimental interest in the field of lattice dynamics. The discussion of these topics is prefaced by chapters dealing with the fundamental concepts of the theory of lattice dynamics, which makes this series of books a self-contained exposition of the subject. Each chapter covers a specific aspect of the subject and is written by a recognized authority in the field. View Details


Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics
by Andrej Szytula (Author), Janusz Leciejewicz (Author)

Rare-earth intermetallics, also known as lanthanide elements, play an important role in the study of magnetic materials and the development of semi- and super-conducting materials. This handbook provides an up-to-date compilation of crystallographic, physical, and magnetic data on rare-earth intermetallic compounds. Over 20 different structure types are described in detail with an emphasis on how crystal structure can affect magnetic properties. Theoretical models for magnetic interactions are described as well as the impact of crystal electric fields on transport properties, magneto... View Details


Principles of Organic Chemistry
by Robert J. Ouellette (Author), J. David Rawn (Author)

Class-tested and thoughtfully designed for student engagement, Principles of Organic Chemistry provides the tools and foundations needed by students in a short course or one-semester class on the subject. This book does not dilute the material or rely on rote memorization. Rather, it focuses on the underlying principles in order to make accessible the science that underpins so much of our day-to-day lives, as well as present further study and practice in medical and scientific fields. This book provides context and structure for learning the fundamental principles of organic... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.