Soft magnetic material characterizations get a harder look

November 14, 2017

WASHINGTON, D.C., November 14, 2017 -- In motors, generators and similar electric machines, the electrical current that powers them generates magnetic fields that magnetize some of the metallic components.

Choosing the right magnetic material is crucial for designing efficient machines, so researchers from the Institute of Electrical Machines (IEM) at RWTH Aachen University in Germany analyzed the existing system for characterizing soft magnetic materials, which are easily magnetized. To identify a better system for quality control, they looked at several factors that can affect the uncertainty inherent in the measurement of magnetic properties. Their results are published this week in the AIP Advances, from AIP Publishing.

One example of a soft magnetic material manufacturers use to make generators, electric motors and transformers is low carbon steel. Generally, these materials serve the purpose of guiding and amplifying the magnetic flux when converting between mechanical and electrical energy in these machines. Magnetic measurements allow manufacturers to characterize those materials and to calculate how much power will be lost due to the magnetization process.

"Manufacturing processes such as the cutting of the steel lamination influence the behavior of the soft magnetic material," said Silas Elfgen of RWTH Aachen University. "Therefore such influence has to be measured and we must be able to model such parasitic effects."

Standardized methods for evaluating magnetic properties exist, but the researchers found them to be inadequate for applications such as designing traction drives in vehicles. They used one of the standard testing instruments, called a single sheet tester, to characterize soft magnetic materials across a range of frequencies and magnetic flux densities.

Their tests showed that the currently used parameters describing measurement qualities are not sufficient for accurately evaluating uncertainties that arise at frequencies and magnetization levels of some applications currently of interest. They also looked at additional factors that influence the characterization and measured how much each parameter contributes to the uncertainty. They propose that these uncertainties can guide the selection of the most appropriate soft magnetic material for a specific electrical machine.

"These analyses can be used by everyone working with magnetic characteristics and magnetic model parameters," Elfgen said. "Further, it can be used in quality assurance of a product to define production features."
-end-
The article, "Characterisation of soft magnetic materials by measurement: Evaluation of uncertainties up to 1.8 T and 9 kHz," is authored by Silas Elfgen, David Franck and Kay Hameyer. The article will appear in AIP Advances Nov. 14, 2017 (DOI: 10.1063/1.4993294). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4993294.

ABOUT THE JOURNAL

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See http://aipadvances.aip.org.

American Institute of Physics

Related Magnetic Properties Articles from Brightsurf:

Scientists design magnets with outstanding properties
An international team of researchers led by the Centre de Recherche Paul Pascal (UMR 5031, CNRS -University of Bordeaux) has discovered a novel way to design magnets with outstanding physical properties, which could make them complementary to, or even competitive with traditional inorganic magnets, which are widely used in everyday appliances.

Topology gets magnetic: The new wave of topological magnetic materials
The electronic structure of nonmagnetic crystals can be classified by complete theories of band topology, reminiscent of a 'topological periodic table.' However, such a classification for magnetic materials has so far been elusive, and hence very few magnetic topological materials have been discovered to date.

Bridging the gap between the magnetic and electronic properties of topological insulators
Scientists at Tokyo Institute of Technology shed light on the relationship between the magnetic properties of topological insulators and their electronic band structure.

Nano-microscope gives first direct observation of the magnetic properties of 2D materials
Widefield nitrogen-vacancy microscope solves problem of there being no way to tell exactly how strongly magnetic a 2D material was.

Spintronics: Researchers show how to make non-magnetic materials magnetic
A complex process can modify non-magnetic oxide materials in such a way to make them magnetic.

Probing the properties of magnetic quasi-particles
Researchers have for the first time measured a fundamental property of magnets called magnon polarisation -- and in the process, are making progress towards building low-energy devices.

Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties
The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers, reports in the most recent edition of ScienceAdvances.

Turmeric could have antiviral properties
Curcumin, a natural compound found in the spice turmeric, could help eliminate certain viruses, research has found.

Elucidating how asymmetry confers chemical properties
New research by Carnegie's Olivier Gagné and collaborator Frank Hawthorne of the University of Manitoba categorizes the causes of structural asymmetry, some surprising, which underpin useful properties of crystals, including ferroelectricity, photoluminescence, and photovoltaic ability.

Coupled magnetic materials show interesting properties for quantum applications
In a new study led by the US Department of Energy's Argonne National Laboratory, researchers have uncovered a novel way in which the excitations of magnetic spins in two different thin films can be strongly coupled to each other through their common interface.

Read More: Magnetic Properties News and Magnetic Properties Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.