Nav: Home

Stem cells express genes differently in the lab dish than in the body, study finds

November 14, 2017

Stem cells in the body have a significantly different gene-expression profile than do the same cells when they're isolated in a lab dish, according to researchers at the Stanford University School of Medicine.

The research suggests that any conclusions about stem cell function based on studies of isolated stem cells may now need to be reconsidered in light of the fact that the cells' biology changes during isolation. In particular, the researchers found that levels of certain RNA molecules increased when stem cells were isolated, whereas the levels of many other RNA molecules decreased.

"The cells in the animal clearly differ from those that are removed for study," said Thomas Rando, MD, PhD, professor of neurology and neurological sciences. "It's likely that some of these notable differences will skew our view of what the quiescent state entails for many types of adult stem cells. We and other researchers will need to rethink about how to profile stem cells in a way that accurately reflects their in vivo state."

A study describing the research will be published Nov. 14 in Cell Reports. Rando, the director of Stanford's Glenn Center for the Biology of Aging, is the senior author. Postdoctoral scholar Cindy van Velthoven, PhD, is the lead author.

New technology

Previous studies of stem cell gene expression have been largely based on cells that had been removed from their native environment within an animal and purified through a process called fluorescence-activated cell sorting, or FACS. Researchers then studied the function, biology and RNA content of the isolated cells.

In contrast, Rando and his colleagues used a new technology that allowed them to specifically label RNA molecules at the moment of their birth in muscle stem cells in mice. These molecules could then be rapidly extracted for study, in contrast to the several hours it can take to isolate whole stem cells from an animal. This approach allowed them to distinguish the patterns of gene expression in vivo from those observed in stem cells that have been isolated before analysis of their RNA.

The results confirmed what previous research in Rando's laboratory has shown: Despite their seemingly sleepy lifestyle, muscle stem cells are actually hotbeds of activity concealed by a tranquil outer membrane. The researchers were particularly surprised to learn that many of the RNAs made by the muscle stem cells in vivo are either degraded before they are made into proteins, or they are made into proteins that are then rapidly destroyed -- a seemingly shocking waste of energy for cells that spend most of their lives just cooling their heels along the muscle fiber.

"Historically, we've thought of quiescence as an 'everything off,' or dormant, state," said Rando. "But our work has shown that the reality is quite different. Not only have we been missing transcripts that are present in vivo, but we are also puzzled as to why so many transcripts that are made in vivo are not made into proteins. It's possible that this is one way the cells stay ready to undergo a rapid transformation, either by blocking degradation of RNA or proteins or by swiftly initiating translation of already existing RNA transcripts."

Effects of cell isolation

The researchers found that isolated cells make large numbers of RNA molecules known to be involved in cellular stress and in cellular proliferation. Conversely, stem cells in the body make more RNAs involved in maintaining the quiescent state, in which they exist until called upon to make new muscle fibers.

The researchers additionally found that the process of isolating whole muscle stem cells for study caused some important RNA molecules to be degraded, rendering them undetectable in previous studies. These findings further support the notion that this quiescent state is not one of dormancy, but one of active regulation and controls -- controls that are no longer needed once the cells are awakened to begin the process of tissue repair.

Rando and his colleagues expect that the new RNA labeling technique will be used by many other researchers studying adult stem cells.

"It's so important to know what we are and are not modeling about the state of these cells in vivo," said Rando. "Are we modeling it correctly when we look at stem cells isolated by FACS? This study will have a big impact on how researchers in the field think about understanding the characteristics of stem cells as they exist in their native state in the tissue."
-end-
Other Stanford authors of the study are postdoctoral scholars Antoine de Morree, PhD, and Ingrid Egner, PhD; and graduate student Jamie Brett.

The research was supported by the Glenn Foundation for Aging Research, the Muscular Dystrophy Association, the National Institutes of Health (grants AG036695, AG23806 and AG047820), the California Institute for Regenerative Medicine and the Department of Veterans Affairs.

Stanford's Department of Neurology and Neurological Sciences also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Stanford Children's Health. For information about all three, please visit http://med.stanford.edu.

Print media contact:

Krista Conger
650-725-5371
kristac@stanford.edu

Broadcast media contact:

Margarita Gallardo
650-723-7897
mjgallardo@stanford.edu

Stanford University Medical Center

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem Cells: A Short Course
by Rob Burgess (Author)

Essentials of Stem Cell Biology
by Robert Lanza (Editor), Anthony Atala (Editor)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

Engineering Stem Cells for Tissue Regeneration
by Ngan F Huang (Author), Ngan F Huang (Editor), Nicolas L'Heureux (Editor), Song L (Editor)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

The Science of Stem Cells
by Jonathan M. W. Slack (Author)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.