Nav: Home

Shape-shifting agent targets harmful bacteria in the stomach

November 14, 2017

CHAMPAIGN, Ill. -- A new shape-shifting polymer can target and kill Helicobacter pylori bacteria in the stomach without killing helpful bacteria in the gut. Such a treatment could improve the digestive health of billions of people worldwide who contract H. pylori infections.

The antimicrobial agent morphs into a bacterial hole-puncher in the stomach's acidic environment and reverts to an amorphous, inactive structure when it reaches the higher pH environment of the small intestine.

Researchers at the University of Illinois and collaborators in China and at Vanderbilt University published their findings in the Proceedings of the National Academy of Sciences. The study leaders were Illinois professors Jianjun Cheng, a Hans Thurnauer Professor of Materials Science and Engineering, and Lin-Feng Chen, a professor of biochemistry.

H. pylori infects the lining of the stomach and is a leading cause of stomach ulcers, gastritis and stomach cancer.

"Fifty percent of the world population will have H. pylori infections in their lifetime," Cheng said. "It's a huge market that needs improved solutions, especially in developing countries. Our conformation-switchable polypeptide is the only therapy reported so far that can kill this bacteria at a specific pH range."

The standard treatment for H. pylori infections requires a cocktail of several antibiotics and an agent to reduce acidity in the stomach so that the antibiotics can work. This has the unfortunate side effect of killing off 65 to 80 percent of other bacteria in the digestive tract, Cheng said - bacteria crucial to maintaining digestive health, nutrient absorption and the immune system.

Cheng's group previously developed short protein chains that twist into a helical spiral, giving them a stiff, rodlike structure that can punch holes through bacterial membranes - a method of killing to which bacteria have little ability to develop resistance. With a few simple alterations to the side chains that branch out from the polymer backbone, the researchers were able to create a shape-shifting version of the hole-punching agent.

When in the pH range in most body tissues, the proteins are shapeless and limp, unable to get through cell membranes. But at acidic pH the stomach, they curl up into the spiral rod structures, allowing targeted killing of H. pylori.

"This is a very simple solution to this disease," Cheng said. "These materials become therapeutically effective in the stomach, but once they move to the small intestine - where you have a lot of good bacteria - the pH is neutral or slightly basic and the materials quickly lose their rigid structures. Then they are excreted from the body."

The researchers tested the drug on mice with H. pylori infections from several different cell lines, and found that the drug was effective against the H. pylori while maintaining populations of healthy gut bacteria. Since the mouse stomach has a slightly higher pH than the human stomach, the researchers believe it will be even more effective in the greater acidity of the human stomach, Chen said.

The researchers are performing tests in large animal models as the next step toward human studies. They have obtained a patent and are working toward commercializing the agent as well.

"Traditional treatment involves complicated drug designs and combinations. This drug is very easy to manufacture and scale up. It's just a polymer - a polypeptide chain with amino acid building blocks - and it's biodegradable," Cheng said.
-end-
The National Institutes of Health and the National Science Foundation supported this work.

Editor's notes: To contact Jianjun Cheng, call 217-244-3924 ; email: jianjunc@illinois.edu. To contact Lin-Feng Chen, call 217-333-7764; email: lfchen@life.illinois.edu.

The paper "Selective killing of Helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides" is available online. DOI:10.1073/pnas.1710408114

University of Illinois at Urbana-Champaign

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

A Field Guide to Bacteria (Comstock Book)
by Betsey Dexter Dyer (Author)

The Bacteria Book: The Big World of Really Tiny Microbes
by Steve Mould (Author)

I Contain Multitudes: The Microbes Within Us and a Grander View of Life
by Ed Yong (Author)

Bacteria: Staph, Strep, Clostridium, and Other Bacteria (Class of Their Own (Paperback))
by Judy Wearing (Author)

Bacteria: A Very Short Introduction (Very Short Introductions)
by Sebastian G.B. Amyes (Author)

Molecular Genetics of Bacteria, 4th Edition
by Larry Snyder (Author), Joseph E. Peters (Author), Tina M. Henkin (Author), Wendy Champness (Author)

Superbugs: An Arms Race against Bacteria
by William Hall (Author), Anthony McDonnell (Author), Jim O'Neill Chair of a formal Review on Antimicrobial Resistance (AMR) (Author)

From Bacteria to Bach and Back: The Evolution of Minds
by HighBridge, a Division of Recorded Books

The Surprising World of Bacteria with Max Axiom, Super Scientist (Graphic Science)
by Agnieszka Biskup (Author), Anne Timmons (Author), Matt Webb (Author), Krista Ward (Author)

Virus vs. Bacteria : Knowing the Difference - Biology 6th Grade | Children's Biology Books
by Baby Professor (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.