Soil's history: A solution to soluble phosphorus?

November 14, 2018

The Food and Agriculture Organization of the United Nations estimates that around 45 million tons of phosphorus fertilizers will be used around the world in 2018.

Much will be applied to soils that also received phosphorus fertilizers in past years.

According to a new study, much of that could be unnecessary.

"Previous application of phosphorus fertilizers increases the effectiveness of subsequent applications," says Jim Barrow, lead author of the study. Barrow is a scientist at the University of Western Australia.

He says better understanding soil phosphorus dynamics can have many benefits. It could lead to more judicious use of phosphorus fertilizers. "At a world level, phosphorus is a limited resource. We need to use it wisely."

At a local level, excessive use of phosphorus fertilizers can pollute water. And at the farm level, purchasing phosphorus fertilizers is a major expense for farmers. "If farmers use only as much as is required, it will help the environment," Barrow states. "It will also save them money."

When phosphorus fertilizers are applied to soils, only a fraction is taken up by plants. That's because most of the phosphorus is stuck on soil grains; only a small proportion is in solution. "When the portion in solution is high, plants can get phosphorus quickly from the soil," says Barrow. "Low fertilizer application rates are sufficient."

Phosphate, the compound used in fertilizers, can react with and penetrate soil particles. Barrow points out that when this happens, it's "scarcely available to plants. This is a major reason why farmers have to reapply phosphorus fertilizers."

But this has its upside. "When phosphate penetrates soil particles, it makes the soil particles more negatively charged," Barrow explains. Since similar charges repel each other, negatively charged soil particles repel the negatively charged phosphate. That means there is more in solution. Plants get it faster, and therefore need less fertilizer.

Barrow and colleagues explored whether phosphate would continue to penetrate soil particles at the same rate over time. They reasoned that the rate would decrease as the negative charge built up.

They showed that when a lot of phosphorus has been applied over time the penetration of phosphate slows down and ultimately stops. "When this happens, you only need to replace phosphate used (and removed in produce) in the previous year," says Barrow.

It's similar to repairing a gravel road. The potholes and other gaps need to be filled first before a smooth, functional top layer is applied.

Barrow worked with colleagues at Bidhan Chandra Agricultural University in West Bengal, India. They used soil from a site about 65 miles west of the city of Kolkata, India. To mimic phosphorus application over time, the researchers applied phosphorus and then kept the soil at 140°F (60°C) for more than a month.

"It is quite slow at ordinary temperatures," says Barrow. "This way we don't have to wait around for years before we can do an experiment."

The findings can help farmers use phosphorus fertilizers more efficiently. Farmers could also save money. "But these findings need to be conveyed to farmers," says Barrow. "The effectiveness of the soluble phosphate fertilizers has been grossly underestimated."
Read more in Soil Science Society of America Journal. Barrow worked with colleagues Abhijit Debnath, Arup Sen, and students at Bidhan Chandra Agricultural University in West Bengal, India.

American Society of Agronomy

Related Phosphorus Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

Phosphorus deficit may disrupt regional food supply chains
Phosphorus-based fertilizer is essential in modern agriculture. In regions with high population growth, more phosphorus will be needed to produce more food.

SwRI scientist searches for stellar phosphorus to find potentially habitable exoplanets
SAN ANTONIO -- Sept. 16, 2020 -- A Southwest Research Institute scientist has identified stellar phosphorus as a probable marker in narrowing the search for life in the cosmos.

Worldwide loss of phosphorus due to soil erosion quantified for the first time
Phosphorus is essential for agriculture, yet this important plant nutrient is increasingly being lost from soils around the world.

Stars rich in phosphorus: Seeds of life in the universe
The journal Nature Communications today is publishing the discovery of a new type of stars, very rich in phosphorus, which could help to explain the origin of this chemical element in our Galaxy.

Black phosphorus future in 3D analysis, molecular fingerprinting
Many compact systems using mid-infrared technology continue to face compatibility issues when integrating with conventional electronics.

Fostering a sustainable use of phosphorus
Phosphorus is critical to food security, ecosystem functioning and human activities.

Newly discovered plant gene could boost phosphorus intake
Researchers from the University of Copenhagen have discovered an important gene in plants that could help agricultural crops collaborate better with underground fungi -- providing them with wider root networks and helping them to absorb phosphorus.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Graphene heterostructures with black phosphorus, arsenic enable new infrared detectors
MIPT scientists and their colleagues from Japan and the U.S.

Read More: Phosphorus News and Phosphorus Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to