Physicists discover new way of resonance tuning for nonlinear optics

November 14, 2018

A research team from ITMO University and the Australian National University has discovered that different metasurfaces exhibit the same behavior provided a symmetry breaking is introduced to their unit cells "meta-atoms". Asymmetry of meta-atoms results in high-quality (high Q) resonances in the transmittance spectra of metasurfaces. Such resonances are capable of multiple amplification of external signals. By manipulating the asymmetry, scientists were able to control the resonances and thus an optical response, which is highly desirable for practical applications. The results of this research were published in Physical Review Letters.

Quality factor (the so-called Q factor) is one of the most important characteristics of a resonant system that determines the effectiveness of light-matter interaction and amplification of external signals. It shows how well the structure can trap light. When the sample is reduced in size, especially in thickness, its quality factor is also reduced significantly, making it unsuitable for practical applications.

In their new research, a team of physicists from ITMO University and the Australian National University, led by Prof. Yuri Kivshar, has revealed a new physics of high-Q resonances. Scientists found that the high-Q sharp resonances are manly determined by asymmetry of meta-atoms, and they almost do not depend on the thickness of metasurfaces and the type of materials demonstrating a universal behavior for all types of such metasurfaces.

Therefore, metasurfaces with broken symmetry can be used to create thin (less than the length of light) and highly efficient sensors, lasers, and nonlinear radiation sources.

More importantly, the researchers proved that high-Q resonances in asymmetric metasurfaces are governed by bound states in the continuum. The latter are nonradiative states that appear when several resonances in a system interact in the regime of destructive interference suppressing the radiative losses.

"We have been studying bound states in the continuum for two years as part of a project supported by the Russian Science Foundation. At some point we realized that the nature of high-Q resonances in metasurfaces is related to the physics of bound states of the continuum. It turns out that, by introducing an asymmetry, we can destroy bound states in the continuum and convert them to high-Q resonances. We analyzed a dozen asymmetric systems, found in various sources, in great detail and were able to show that the previously described effects were caused by bound states in the continuum," says Dr. Andrey Bogdanov, a research fellow at the International Research Center for Nanophotonics and Metamaterials at ITMO University.

"The most important result of our work is that we were able to aggregate and summarize the results of a large number of works from various fields of photonics and radiophysics, all of which only have two things in common: the structure, which is an asymmetric metasurface, and the nature of observed phenomena, that of sharp and narrow resonances in spectral response. In older works, this was explained through the use of new terms. We, however, showed that all physical phenomena can be described via bound states in the continuum, a universal interferential phenomenon known to quantum physicists since the early 20th century," notes Mr. Kirill Koshelev, a staff member of the International Research Center for Nanophotonics and Metamaterials at ITMO University.

According to the researchers, a deeper understanding of optics of bound states in the continuum can help simplify the process of creating materials with specific optical response. In future research, the scientists plan to use the results they acquired to analyze nonlinear optical effects in similar metasurfaces.

Asymmetric Metasurfaces with High-Q Resonances Governed by Bound States in the Continuum
Kirill Koshelev et al. Phys. Rev. Lett. 121, 193903 (2018).

ITMO University

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to