How exercise could help fight drug addiction

November 14, 2018

The siren call of addictive drugs can be hard to resist, and returning to the environment where drugs were previously taken can make resistance that much harder. However, addicts who exercise appear to be less vulnerable to the impact of these environmental cues. Now, research with mice suggests that exercise might strengthen a drug user's resolve by altering the production of peptides in the brain, according to a study in the journal ACS Omega.

Re-exposure to drug-related cues, such as the location where drugs were taken, the people with whom they were taken or drug paraphernalia, can cause even recovered drug abusers to relapse. Prior studies have shown that exercise can reduce craving and relapse in addicts, as well as mice. Although the mechanism was unknown, exercise was thought to alter the learned association between drug-related cues and the rewarding sensations of taking a drug, possibly by changing the levels of peptides in the brain. Jonathan Sweedler, Justin Rhodes and colleagues at University of Illinois at Urbana-Champaign decided to explore this theory by quantifying these peptide changes in mice.

Mice were given cocaine injections over four days in special chambers with a distinctive floor texture to produce a drug association with that environment. The animals were then housed for 30 days in cages, some of which included a running wheel. The researchers found that mice that exercised on these wheels had lower levels of brain peptides related to myelin, a substance that is thought to help fix memories in place. Re-exposure to the cocaine-associated environment affected running and sedentary mice differently: Compared with sedentary mice, the animals with running wheels showed a reduced preference for the cocaine-associated environment. In addition, the brains of re-exposed runners contained higher levels of hemoglobin-derived peptides, some of which are involved in cell signaling in the brain. Meanwhile, peptides derived from actin decreased in the brains of re-exposed sedentary mice. Actin is involved in learning and memory and is implicated in drug seeking. The researchers say these findings related to peptide changes will help to identify biomarkers for drug dependence and relapse.
-end-
The research was supported by the National Institute on Drug Abuse.

The study is freely available as an Editor's Choice article here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org">newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.