New way to study swallowing could one day lead to improved treatments for ALS

November 14, 2018

COLUMBIA, Mo. (Nov. 14, 2018) --There is no cure for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's Disease, but new findings from the University of Missouri School of Medicine and the University of Missouri College of Veterinary Medicine are deepening researchers' understanding of a common ALS symptom: swallowing problems. Researchers have discovered how to mimic human swallowing problems in a rodent model of ALS, which will allow more targeted study on how to preserve and restore swallowing function -- a major factor in quality of life. The research could one day lead to new treatments to slow the disease and improve the well-being of individuals with ALS.

"ALS is a neurodegenerative disease that makes it hard to study one aspect, like swallowing function, when the entire body is wasting away," said study co-author Teresa Lever, PhD, associate professor of otolaryngology at the MU School of Medicine. "We created a rodent model that allows us to study only the tongue, which is an essential muscle for several upper airway functions, including swallowing, breathing and speaking. By targeting a muscle we know is affected by ALS, we hope to better understand how we might eventually slow ALS' ability to compromise multiple upper airway functions."

ALS affects swallowing by killing the hypoglossal motor neurons that send impulses from the brain along the hypoglossal nerve to the muscles that control the tongue. As more motor neurons die, the tongue begins to weaken, and swallowing, breathing and speaking become more difficult.

Lever's co-author, Nicole Nichols, PhD, assistant professor of Biomedical Sciences at the MU College of Veterinary Medicine and investigator at the MU Dalton Cardiovascular Research Center, examined the impact of motor neuron death on hypoglossal nerve output, which controls tongue function.

"We have developed a unique rodent model that has reproducible hypoglossal motor neuron death and only tongue dysfunction, which will allow for further study to preserve upper airway function," Nichols said. "Specifically, we'll be able to evaluate the adaptability of the surviving motor neurons in response to the loss of others. What we want to do next is try to make the surviving neurons work a little harder to show that we can improve tongue function both in the short and long term."
Their study, "Hypoglossal Motor Neuron Death Via Intralingual CTB-saporin (CTB-SAP) Injections Mimic Aspects of Amyotrophic Lateral Sclerosis (ALS) Related to Dysphagia," was recently published by the journal Neuroscience. Research reported in this publication was supported by the National Institutes of Health, University of Missouri Research Board, a Richard Wallace Faculty Incentive Grant provided by the Mizzou Alumni Association and the Veterinary Research Scholars Program. In addition to Nichols and Lever, the study authors include Lori Lind, in the MU Department of Biomedical Sciences, and Erika Murphy, in the MU Department of Communication Science and Disorders. The authors of the study declare that they have no conflicts of interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

University of Missouri-Columbia

Related Amyotrophic Lateral Sclerosis Articles from Brightsurf:

Converting lateral scanning into axial focusing to speed up 3D microscopy
In optical microscopy, high-speed volumetric imaging is limited by either the slow axial scanning rate or aberrations introduced by the z-scanning mechanism.

Ammonium triggers formation of lateral roots
Despite the importance of changes in root architecture to exploit local nutrient patches, mechanisms integrating external nutrient signals into the root developmental program remain poorly understood.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Adjustable lordotic expandable vs static lateral lumbar interbody fusion devices
The objective of this study is to compare the clinical and radiographic outcomes between patients treated with static and expandable interbody spacers with adjustable lordosis for MIS LLIF.

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Chiral nanoparticles which twist the light were theoretically predicted to experience lateral forces perpendicular to light vector but lacks experimental verification.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.

Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).

New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).

Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.

Read More: Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to