Putting food-safety detection in the hands of consumers

November 14, 2018

MIT Media Lab researchers have developed a wireless system that leverages the cheap RFID tags already on hundreds of billions of products to sense potential food contamination -- with no hardware modifications needed. With the simple, scalable system, the researchers hope to bring food-safety detection to the general public.

Food safety incidents have made headlines around the globe for causing illness and death nearly every year for the past two decades. Back in 2008, for instance, 50,000 babies in China were hospitalized after eating infant formula adulterated with melamine, an organic compound used to make plastics, which is toxic in high concentrations. And this April, more than 100 people in Indonesia died from drinking alcohol contaminated, in part, with methanol, a toxic alcohol commonly used to dilute liquor for sale in black markets around the world.

The researchers' system, called RFIQ, includes a reader that senses minute changes in wireless signals emitted from RFID tags when the signals interact with food. For this study they focused on baby formula and alcohol, but in the future, consumers might have their own reader and software to conduct food-safety sensing before buying virtually any product. Systems could also be implemented in supermarket back rooms or in smart fridges to continuously ping an RFID tag to automatically detect food spoilage, the researchers say.

The technology hinges on the fact that certain changes in the signals emitted from an RFID tag correspond to levels of certain contaminants within that product. A machine-learning model "learns" those correlations and, given a new material, can predict if the material is pure or tainted, and at what concentration. In experiments, the system detected baby formula laced with melamine with 96 percent accuracy, and alcohol diluted with methanol with 97 percent accuracy.

"In recent years, there have been so many hazards related to food and drinks we could have avoided if we all had tools to sense food quality and safety ourselves," says Fadel Adib, an assistant professor at the Media Lab who is co-author on a paper describing the system, which is being presented at the ACM Workshop on Hot Topics in Networks. "We want to democratize food quality and safety, and bring it to the hands of everyone."

The paper's co-authors include: postdoc and first author Unsoo Ha, postdoc Yunfei Ma, visiting researcher Zexuan Zhong, and electrical engineering and computer science graduate student Tzu-Ming Hsu.

The power of "weak coupling"

Other sensors have also been developed for detecting chemicals or spoilage in food. But those are highly specialized systems, where the sensor is coated with chemicals and trained to detect specific contaminations. The Media Lab researchers instead aim for broader sensing. "We've moved this detection purely to the computation side, where you're going to use the same very cheap sensor for products as varied as alcohol and baby formula," Adib says.

RFID tags are stickers with tiny, ultra-high-frequency antennas. They come on food products and other items, and each costs around three to five cents. Traditionally, a wireless device called a reader pings the tag, which powers up and emits a unique signal containing information about the product it's stuck to.

The researchers' system leverages the fact that, when RFID tags power up, the small electromagnetic waves they emit travel into and are distorted by the molecules and ions of the contents in the container. This process is known as "weak coupling." Essentially, if the material's property changes, so do the signal properties.

A simple example of feature distortion is with a container of air versus water. If a container is empty, the RFID will always respond at around 950 megahertz. If it's filled with water, the water absorbs some of the frequency, and its main response is around only 720 megahertz. Feature distortions get far more fine-grained with different materials and different contaminants. "That kind of information can be used to classify materials ... [and] show different characteristics between impure and pure materials," Ha says.

In the researchers' system, a reader emits a wireless signal that powers the RFID tag on a food container. Electromagnetic waves penetrate the material inside the container and return to the reader with distorted amplitude (strength of signal) and phase (angle).

When the reader extracts the signal features, it sends those data to a machine-learning model on a separate computer. In training, the researchers tell the model which feature changes correspond to pure or impure materials. For this study, they used pure alcohol and alcohol tainted with 25, 50, 75, and 100 percent methanol; baby formula was adulterated with a varied percentage of melamine, from 0 to 30 percent.

"Then, the model will automatically learn which frequencies are most impacted by this type of impurity at this level of percentage," Adib says. "Once we get a new sample, say, 20 percent methanol, the model extracts [the features] and weights them, and tells you, 'I think with high accuracy that this is alcohol with 20 percent methanol.'"

Broadening the frequencies

The system's concept derives from a technique called radio frequency spectroscopy, which excites a material with electromagnetic waves over a wide frequency and measures the various interactions to determine the material's makeup.

But there was one major challenge in adapting this technique for the system: RFID tags only power up at a very tight bandwidth wavering around 950 megahertz. Extracting signals in that limited bandwidth wouldn't net any useful information.

The researchers built on a sensing technique they developed earlier, called two-frequency excitation, which sends two frequencies -- one for activation, and one for sensing -- to measure hundreds more frequencies. The reader sends a signal at around 950 megahertz to power the RFID tag. When it activates, the reader sends another frequency that sweeps a range of frequencies from around 400 to 800 megahertz. It detects the feature changes across all these frequencies and feeds them to the reader.

"Given this response, it's almost as if we have transformed cheap RFIDs into tiny radio frequency spectroscopes," Adib says.

Because the shape of the container and other environmental aspects can affect the signal, the researchers are currently working on ensuring the system can account for those variables. They are also seeking to expand the system's capabilities to detect many different contaminants in many different materials.

"We want to generalize to any environment," Adib says. "That requires us to be very robust, because you want to learn to extract the right signals and to eliminate the impact of the environment from what's inside the material."
-end-
Written by Rob Matheson, MIT News Office

Related links

PAPER: "Learning Food Quality and Safety from Wireless Stickers"

http://www.mit.edu/~fadel/papers/RFIQ-paper.pdf

RFIQ: Food quality and safety detection using wireless stickers

http://www.media.mit.edu/projects/learning-food-quality-and-safety-using-wireless-stickers/overview/

ARCHIVE: Wireless communication breaks through water-air barrier

http://news.mit.edu/2018/wireless-communication-through-water-air-0822

ARCHIVE: Wireless system can power devices inside the body

http://news.mit.edu/2018/wireless-system-power-devices-inside-body-0604

ARCHIVE: Drones relay RFID signals for inventory control

http://news.mit.edu/2017/drones-relay-rfid-signals-inventory-control-0825

Massachusetts Institute of Technology

Related Alcohol Articles from Brightsurf:

Alcohol use changed right after COVID-19 lockdown
One in four adults reported a change in alcohol use almost immediately after stay-at-home orders were issued: 14% reported drinking more alcohol and reported higher levels of stress and anxiety than those who did not drink and those whose use stayed the same.

Changes in hospitalizations for alcohol use disorder in US
Changes over nearly two decades in the rate of hospitalizations and in-hospital deaths from alcohol use disorder in the US were examined in this study.

Associations of alcohol consumption, alcohol-induced passing out with risk of dementia
The risk of future dementia associated with overall alcohol consumption and alcohol-induced loss of consciousness in a population of current drinkers was examined in this observational study with more than 131,000 adults.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

Does estrogen influence alcohol use disorder?
A new study from researchers at the University of Illinois at Chicago shows that high estrogen levels may make alcohol more rewarding to female mice.

Sobering new data on drinking and driving: 15% of US alcohol-related motor vehicle fatalities involve alcohol under the legal limit
A new study in the American Journal of Preventive Medicine, published by Elsevier, found that motor vehicle crashes involving drivers with blood alcohol concentrations (BACs) below the legal limit of 0.08 percent accounted for 15% of alcohol-involved crash deaths in the United States.

Alcohol-induced deaths in US
National vital statistics data from 2000 to 2016 were used to examine how rates of alcohol-induced deaths (defined as those deaths due to alcohol consumption that could be avoided if alcohol weren't involved) have changed in the US and to compare the results by demographic groups including sex, race/ethnicity, age, socioeconomic status and geographic location.

Cuts in alcohol duty linked to 2000 more alcohol-related deaths in England
Government cuts to alcohol taxes have had dramatic consequences for public health, including nearly 2000 more alcohol-related deaths in England since 2012, according to new research from the University of Sheffield's School of Health and Related Research (ScHARR).

Integrated stepped alcohol treatment for people in HIV care improves both HIV & alcohol outcomes
Increasing the intensity of treatment for alcohol use disorder (AUD) over time improves alcohol-related outcomes among people with HIV, according to new clinical research supported by the National Institutes of Health.

The Lancet:Targets to reduce harmful alcohol use are likely to be missed as global alcohol intake increases
Increasing rates of alcohol use suggest that the world is not on track to achieve targets against harmful alcohol use, according to a study of 189 countries' alcohol intake between 1990-2017 and estimated intake up to 2030, published in The Lancet.

Read More: Alcohol News and Alcohol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.