Researchers discover novel 'to divide or to differentiate' switch in plants

November 14, 2018

Scientists from VIB and Ghent University under the guidance of Prof. Dr. Jenny Russinova uncovered a novel mechanism in plants that controls an important decision step in stomatal lineage to divide asymmetrically or to differentiate. This is a decisive step for the formation of stomata, tiny pores on the plant surface, produced by asymmetric cell division. In the model plant Arabidopsis thaliana they identified a scaffolding protein, POLAR, and demonstrated that POLAR brings a subset of GSK3-like kinases to their interacting partners at the polarized end of the stomatal precursor cell to initiate asymmetric cell division. This surprising regulation through scaffolding might be a more common mechanism to control GSK3-like kinases functions in plants.

Anaxi Houbaert and colleagues under the guidance of Prof. Dr. Jenny Russinova (VIB-UGent) study the development of stomata. It was already known that a GSK3-like kinase can simultaneously promote and inhibit stomatal formation, but it wasn't clear how this can exist in the same stomatal lineage cell. Using protein interactomics approaches established at the VIB-UGent Center for Plant Systems Biology and at the Wageningen University, the researchers identified a plant- and stomatal lineage-specific scaffolding protein, POLAR, that can regulate the subcellular locations of the GSK3-like kinase.

Anaxi Houbaert (VIB-UGent), first author of the paper, explains: "We showed that when POLAR and GSK3-like kinases are co-expressed, the kinase is targeted to the plasma membrane and polarized at one side of the stomatal precursor cell, leading to asymmetric cell division. On the other hand, we saw that when POLAR is absent, the kinase is located in the nucleus to promote cell differentiation."

One of the strongest lines of evidence supporting their claims originated from research with a confocal microscopy equipped with gating technology. This feature allowed the researchers to clear out auto-fluorescence coming from cellular compartments such as chloroplasts, vastly present in the cells constituting the plant leaf epidermis. As a result, the signal to noise ratio could greatly be improved and allowed the visualization of endogenously low expressed kinases during leaf development.

Anaxi Houbaert (VIB-UGent): "We knew that stomatal development is strictly regulated with positive and negative feedback loops keeping each other in check and forming a flexible but yet robust mechanism to drive epidermal development. But it was a surprise to discover the role of POLAR as a scaffolding protein. We would like to investigate the function of the POLAR family and to explore if similar scaffolding proteins regulate GSK3-like kinase activities in other plant tissues."

Prof. Jenny Russinova (VIB-UGent): "Our findings put in light molecular mechanisms that drive cell division and differentiation in Arabidopsis. Since orthologues for the GSK3-like kinase and POLAR protein family can be found throughout both monocot and dicot plant species, it remains to be studied if these orthologues behave in the same way in other plant species and whether these can be used as potential targets for crop improvement."
-end-
Publication

POLAR-guided signaling complex assembly and localization drive asymmetric cell division, Houbaert et al., Nature 2018

Funding


This work was supported by the Research Foundation-Flanders (G008416N) (E.R.), the China Scholarship Council (C.Z., K.W.), the Belgian Science Policy (K.W., M.T., M.K.Z., G.E.G.), the Agency for Innovation by Science and Technology (IWT) (M.K.Z) and the Spanish Government Research Grant AGL2015-65053-R (M.M., C.F.).

VIB (the Flanders Institute for Biotechnology)

Related Plant Species Articles from Brightsurf:

German researchers compile world's largest inventory of known plant species
Researchers at Leipzig University and the German Centre for Integrative Biodiversity Research (iDiv) have compiled the world's most comprehensive list of known plant species.

Evolution in action: New Plant species in the Swiss Alps
A new plant species named Cardamine insueta appeared in the region of Urnerboden in the Swiss alps, after the land has changed from forest to grassland over the last 150 years.

Invasional meltdown in multi-species plant communities
New research led by University of Konstanz ecologists reveals invasional meltdown in multi-species plant communities and identifies the soil microbiome as a major driver of invasion success.

Study shows Latin America twice as rich in plant species as tropical Africa
Latin America is more than twice as rich in plant species as tropical Africa and is home to a third of the world's biodiversity, a new paper published today in Science Advances confirms.

Plant size and habitat traits influence cycad susceptibility to invasive species
A long-term study on cycads in Guam has revealed how rapidly invasive species devastated the native Cycas micronesica species and the key factors that have influenced the plant's mortality.

About 94 per cent of wild bee and native plant species networks lost, York study finds
Climate change and an increase in disturbed bee habitats from expanding agriculture and development in northeastern North America over the last 30 years are likely responsible for a 94 per cent loss of plant-pollinator networks, York University researchers found.

Australian fossil reveals new plant species
Fresh examination of an Australian fossil -- believed to be among the earliest plants on Earth -- has revealed evidence of a new plant species that existed in Australia more than 359 Million years ago.

Study: One-third of plant and animal species could be gone in 50 years
University of Arizona researchers studied recent extinctions from climate change to estimate the loss of plant and animal species by 2070.

Scientists challenge notion of binary sexuality with naming of new plant species
A collaborative team of scientists from the US and Australia has named a new plant species from the remote Outback.

Plant lineage points to different evolutionary playbook for temperate species
An ancient, cosmopolitan lineage of plants is shaking up scientists' understanding of how quickly species evolve in temperate ecosystems and why.

Read More: Plant Species News and Plant Species Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.