Tailor-made carbon helps pinpoint hereditary diseases and correct medication dosage

November 14, 2019

Sensors manufactured with carbon-based materials can provide uniquely accurate and real-time information on hereditary diseases or the concentrations of drugs in the body. In addition to medicine, carbonaceous materials are used in batteries, solar cells and water purification.

Other elements, such as hydrogen and oxygen, are almost always present in carbon-based materials, which alters the materials' properties. Therefore, modifying materials for desired applications requires atomic-level knowledge on carbon surface structures and their chemistry. Researchers at Aalto University, the University of Cambridge, the University of Oxford and Stanford University have now taken a significant new step forward in describing the atomic nature of carbonaceous materials.

Detailed information on carbon surfaces can be obtained by X-ray spectroscopy, but the spectrum it produces is challenging to interpret because it summarises information from several local chemical environments of the surface. The researchers have developed a new systematic analysis method that uses machine learning to integrate the computational model (density functional theory) with the experimental results of the carbon sample. The new methodology allows the experimental spectrum produced by X-ray spectroscopy to be separated into atomic-level data.

'In the past, experimental results have been interpreted differently, based on varying literature references, but now we were able to analyse the results using only computational references. The new method gives us a much better understanding of carbon surface chemistry without human-induced bias' says Anja Aarva, a doctoral student at Aalto University.

The new method expands knowledge of carbon-based materials

In a two-part study, the researchers initially studied how differently bound carbon affects the formation of the experimental spectrum qualitatively. The researchers then attempted to aggregate the measured spectrum with computational spectrum reference data to obtain a quantitative estimate of what the experimental spectrum consists of. This was to help them determine what the nature of the carbon sample at the atomic-level is. The new methodology is suitable for analysing the surface chemistry of various forms of carbon, such as graphene, diamond and amorphous carbon.

The study is a continuation of the work of Aalto University postdoctoral researcher Miguel Caro and professor Volker Deringer from Oxford University, which extensively mapped the structure and reactivity of amorphous carbon. The study utilises machine learning methods developed by professor Volker Deringer and professor Gabor Csányi from Cambridge University. Experimental measurements were carried out by Sami Sainio, an Aalto based postdoctoral researcher at Stanford University.

'Next, we intend to use the methodology we have developed to predict, for example, what kind of carbon surface would be best for electrochemical identification of certain neurotransmitters, and then try to produce the desired surface. In this way, computational work would guide experimental work and not vice versa, as has typically been the case in the past,' Tomi Laurila, professor at Aalto University said.
-end-
The study was published as a two-part article in the prestigious Chemistry of Materials publication.

Links to the articles:

https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b02049

https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b02050

More information

Anja Aarva
Doctoral student
Aalto University
anja.aarva@aalto.fi

Tomi Laurila
Professor
Aalto University
tomi.laurila@aalto.fi

Aalto University

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.