New material breaks world record turning heat into electricity

November 14, 2019

Thermoelectric materials can convert heat into electrical energy. This is due to the so-called Seebeck effect: If there is a temperature difference between the two ends of such a material, electrical voltage can be generated and current can start to flow. The amount of electrical energy that can be generated at a given temperature difference is measured by the so-called ZT value: The higher the ZT value of a material, the better its thermoelectric properties.

The best thermoelectrics to date were measured at ZT values of around 2.5 to 2.8. Scientists at TU Wien (Vienna) have now succeeded in developing a completely new material with a ZT value of 5 to 6. It is a thin layer of iron, vanadium, tungsten and aluminium applied to a silicon crystal.

The new material is so effective that it could be used to provide energy for sensors or even small computer processors. Instead of connecting small electrical devices to cables, they could generate their own electricity from temperature differences. The new material has now been presented in the journal Nature.

Electricity and Temperature

"A good thermoelectric material must show a strong Seebeck effect, and it has to meet two important requirements that are difficult to reconcile," says Prof. Ernst Bauer from the Institute of Solid State Physics at TU Wien. "On the one hand, it should conduct electricity as well as possible; on the other hand, it should transport heat as poorly as possible. This is a challenge because electrical conductivity and thermal conductivity are usually closely related."

At the Christian Doppler Laboratory for Thermoelectricity, which Ernst Bauer established at TU Wien in 2013, different thermoelectric materials for different applications have been studied over the last few years. This research has now led to the discovery of a particularly remarkable material - a combination of iron, vanadium, tungsten and aluminium.

"The atoms in this material are usually arranged in a strictly regular pattern in a so-called face-centered cubic lattice," says Ernst Bauer. "The distance between two iron atoms is always the same, and the same is true for the other types of atoms. The whole crystal is therefore completely regular".

However, when a thin layer of the material is applied to silicon, something amazing happens: the structure changes radically. Although the atoms still form a cubic pattern, they are now arranged in a space-centered structure, and the distribution of the different types of atoms becomes completely random. "Two iron atoms may sit next to each other, the places next to them may be occupied by vanadium or aluminum, and there is no longer any rule that dictates where the next iron atom is to be found in the crystal," explains Bauer.

This mixture of regularity and irregularity of the atomic arrangement also changes the electronic structure, which determines how electrons move in the solid. "The electrical charge moves through the material in a special way, so that it is protected from scattering processes. The portions of charge travelling through the material are referred to as Weyl Fermions," says Ernst Bauer. In this way, a very low electrical resistance is achieved.

Lattice vibrations, on the other hand, which transport heat from places of high temperature to places of low temperature, are inhibited by the irregularities in the crystal structure. Therefore, thermal conductivity decreases. This is important if electrical energy is to be generated permanently from a temperature difference - because if temperature differences could equilibrate very quickly and the entire material would soon have the same temperature everywhere, the thermoelectric effect would come to a standstill.

Electricity for the Internet of Things

"Of course, such a thin layer cannot generate a particularly large amount of energy, but it has the advantage of being extremely compact and adaptable," says Ernst Bauer. "We want to use it to provide energy for sensors and small electronic applications." The demand for such small-scale generators is growing quickly: In the "Internet of Things", more and more devices are linked together online so that they automatically coordinate their behavior with each other. This is particularly promising for future production plants, where one machine has to react dynamically to another.

"If you need a large number of sensors in a factory, you can't wire all of them together. It's much smarter for the sensors to be able to generate their own power using a small thermoelectric device," says Bauer.
-end-
Contact

Prof. Ernst Bauer
Institute for Solid State Physics
TU Wien
Wiedner Hauptstraße 8-19; 1040 Vienna
T +43-1-58801-13160
ernst.bauer@tuwien.ac.at

Vienna University of Technology

Related Thermal Conductivity Articles from Brightsurf:

Clemson researchers decode thermal conductivity with light
Clemson researchers examine a highly efficient thermoelectric material in a new way - by using light.

Collaboration sparks new model for ceramic conductivity
As insulators, metal oxides - also known as ceramics - may not seem like obvious candidates for electrical conductivity.

Topology-optimized thermal cloak-concentrator
Cloaking a concentrator in thermal conduction via topology optimization. A simultaneous cloaking and concentrating of heat flux is achieved through topology optimization, a computational structural design methodology.

Investigating a thermal challenge for MOFs
New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel.

Thermal manipulation of plasmons in atomically thin films
Nanoscale photothermal effects can induce substantial changes in the optical response experienced by the probing light, thus suggesting their applications in all-optical light modulation.

Making plastic more transparent while also adding electrical conductivity
In an effort to improve large touchscreens, LED light panels and window-mounted infrared solar cells, researchers at the University of Michigan have made plastic conductive while also making it more transparent.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)
Researchers found a new sort of simple one-dimensional (1D) crystal structured bismuth selenohalides (BiSeX, X = Br, I) with extremely low thermal conductivity.

Minimizing thermal conductivity of crystalline material with optimal nanostructure
Japanese researchers successfully minimized thermal conductivity by designing, fabricating, and evaluating the optimal nanostructure-multilayer materials through materials informatics (MI), which combines machine learning and molecular simulation.

Scientists measured electrical conductivity of pure interfacial water
Skoltech scientists in collaboration with researchers from the University of Stuttgart, the Karlsruhe Institute of Technology and the Russian Quantum Center achieved the first systematic experimental measurements of the electrical conductivity of pure interfacial water, hence producing new results significantly extending our knowledge of interfacial water.

Atomic magnetometer points to better picture of heart conductivity
Mapping the electrical conductivity of the heart would be a valuable tool in diagnosis and disease management, but doing so would require invasive procedures, which aren't capable of directly mapping dielectric properties.

Read More: Thermal Conductivity News and Thermal Conductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.