Newly developed nanoparticles help fight lung cancer in animal model

November 14, 2019

WINSTON-SALEM, N.C. - Nov. 14, 2019 - Scientists have reported a new approach to treating lung cancer with inhaled nanoparticles developed at Wake Forest School of Medicine, part of Wake Forest Baptist Health.

In this proof of concept study, Dawen Zhao, M.D., Ph.D., associate professor of biomedical engineering at Wake Forest School of Medicine, used a mouse model to determine if metastatic lung tumors responded to an inhalable nanoparticle-immunotherapy system combined with the radiation therapy that is commonly used to treat lung cancer.

The study is published in the current issue of Nature Communications.

Lung cancer is the second most common cancer and the leading cause of cancer death among both men and women. More people die of lung cancer than of colon, breast and prostate cancers combined. Although immunotherapy is promising, it currently works in less than 20% of patients with lung cancer.

Significant clinical evidence suggests that at the time of diagnosis most patients' tumors are poorly infiltrated by immune cells. This "cold" immune environment in tumors prevents the body's immune system from recognizing and eliminating the tumor cells.

Overcoming this immunosuppressive tumor environment to attack the cancer efficiently is currently an area of great interest in the scientific community, Zhao said.

Previous approaches have involved direct injection of immunomodulators into tumors to boost their immune response. However, this approach is generally limited to surface and easily-accessed tumors, and can become less effective if repeated injections are needed to sustain immune response.

"The goal of our research was to develop a novel means to convert cold tumors to hot, immune-responsive tumors," Zhao said. "We wanted it to be non-invasive without needle injection, able to access multiple lung tumors at a time, and be safe for repeated use. We were hoping that this new approach would boost the body's immune system to more effectively fight lung cancer."

The nanoparticle-immunotherapy system that Zhao and his team developed delivered immunostimulants via inhalation to a mouse model of metastatic lung cancer. The immunostimulant-loaded nanoparticle which, when deposited in the lung air sacs, were taken up by one specific type of immune cells, called antigen-presenting cells (APC).

The immunostimulant, cGAMP, in the nanoparticle was then released inside the cell, where stimulation of a particular immune pathway (STING) activated the APC cell, which is a critical step to induce systemic immune response.

The team also showed that combining the nanoparticle inhalation with radiation applied to a portion of one lung led to regression of tumors in both lungs and prolonged survival of the mice. In addition, the team reported that it completely eliminated lung tumors in some of the mice.

Through mechanistic studies the team then confirmed that the inhalation system converted those initially cold tumors in both lungs to hot tumors favorable for robust anti-cancer immunity.

Zhao's inhalable immunotherapy presents several key advantages to previous methods, especially the ability to access deep-seated lung tumors because the nanoparticulate-carrying aerosol was designed to reach all parts of the lung, and the feasibility of repeated treatment by using a non-irritating aerosol formulation.

The treatment was shown to be well tolerated and safe without causing adverse immune-related distress in the mice.

The Wake Forest School of Medicine researchers have filed a provisional patent application for the inhalable nanoparticle-immunotherapy system.
-end-


Wake Forest Baptist Medical Center

Related Lung Cancer Articles from Brightsurf:

State-level lung cancer screening rates not aligned with lung cancer burden in the US
A new study reports that state-level lung cancer screening rates were not aligned with lung cancer burden.

The lung microbiome may affect lung cancer pathogenesis and prognosis
Enrichment of the lungs with oral commensal microbes was associated with advanced stage disease, worse prognosis, and tumor progression in patients with lung cancer, according to results from a study published in Cancer Discovery, a journal of the American Association for Cancer Research.

New analysis finds lung cancer screening reduces rates of lung cancer-specific death
Low-dose CT screening methods may prevent one death per 250 at-risk adults screened, according to a meta-analysis of eight randomized controlled clinical trials of lung cancer screening.

'Social smokers' face disproportionate risk of death from lung disease and lung cancer
'Social smokers' are more than twice as likely to die of lung disease and more than eight times as likely to die of lung cancer than non-smokers, according to research presented at the European Respiratory Society International Congress.

Lung cancer therapy may improve outcomes of metastatic brain cancer
A medication commonly used to treat non-small cell lung cancer that has spread, or metastasized, may have benefits for patients with metastatic brain cancers, suggests a new review and analysis led by researchers at St.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Lung transplant patients face elevated lung cancer risk
In an American Journal of Transplantation study, lung cancer risk was increased after lung transplantation, especially in the native (non-transplanted) lung of single lung transplant recipients.

Proposed cancer treatment may boost lung cancer stem cells, study warns
Epigenetic therapies -- targeting enzymes that alter what genes are turned on or off in a cell -- are of growing interest in the cancer field as a way of making a cancer less aggressive or less malignant.

Are you at risk for lung cancer?
This question isn't only for people who've smoked a lot.

Read More: Lung Cancer News and Lung Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.