Nav: Home

What felled the great Assyrian Empire? A Yale professor weighs in

November 14, 2019

The Neo-Assyrian Empire, centered in northern Iraq and extending from Iran to Egypt -- the largest empire of its time -- collapsed after more than two centuries of dominance at the fall of its capital, Nineveh, in 612 B.C.E.

Despite a plethora of cuneiform textual documentation and archaeological excavations and field surveys, archaeologists and historians have been unable to explain the abruptness and finality of the historic empire's collapse.

Numerous theories about the collapse have been put forward since the city and its destruction levels were first excavated by archaeologists 180 years ago. But the mystery of how two small armies -- the Babylonians in the south and the Medes in the east -- were able to converge on Nineveh and completely destroy what was then the largest city in the world, without any reoccupation, has remained unsolved.

A team of researchers -- led by Ashish Sinha, California State University, Dominguez Hills, and using archival and archaeological data contributed by Harvey Weiss, professor of Near Eastern archaeology and environmental studies at Yale -- was able for the first time to determine the underlying cause for the collapse. By examining new precipitation records of the area, the team discovered an abrupt 60-year megadrought that so weakened the Assyrian state that Nineveh was overrun in three months and abandoned forever. The research was published in Science Advances on Nov. 13.

Assyria was an agrarian society dependent on seasonal precipitation for cereal agriculture. To its south, the Babylonians relied on irrigation agriculture, so their resources, government, and society were not affected by the drought, explains Weiss.

The team analyzed stalagmites -- a type of speleothem that grows up from a cave floor and is formed by the deposit of minerals from water -- retrieved from Kuna Ba cave in northeast Iraq. The speleothems can provide a history of climate through the oxygen and uranium isotope ratios of infiltrating water that are preserved in its layers. Oxygen in rainwater comes in two main varieties: heavy and light. The ratio of heavy to light types of oxygen isotopes are extremely sensitive to variations in precipitation and temperature. Over time, uranium trapped in speleothems turns into thorium, allowing scientists to date the speleothem deposits.

Weiss and the research team synchronized these findings with archaeological and cuneiform records and were able to document the first paleoclimate data for the megadrought that affected the Assyrian heartland at the time of the empire's collapse, when its less drought-affected neighbors invaded. The team's research also revealed that this megadrought followed a high-rainfall period that facilitated the Assyrian empire's earlier growth and expansion.

"Now we have a historical and environmental dynamic between north and south and between rain-fed agriculture and irrigation-fed agriculture through which we can understand the historical process of how the Babylonians were able to defeat the Assyrians," said Weiss, adding that the total collapse of Assyria is still described by historians as the "mother of all catastrophes."

Through the archaeology and history of the region, Weiss was able to piece together how the megadrought data were synchronous with Assyria's cessation of long-distance military campaigns and the construction of irrigation canals that were similar to its southern neighbors but restricted in their agricultural extent. Other texts noted that the Assyrians were worrying about their alliances with distant places, while also fearing internal intrigue, notes Weiss.

"This fits into a historical pattern that is not only structured through time and space, but a time and space that is filled with environmental change," says Weiss. "These societies experienced climatic changes that were of such magnitude they could not simply adapt to them," he adds.

With these new speleothem records, says Weiss, paleoclimatologists and archaeologists are now able to identify environmental changes in the global historical record that were unknown and inaccessible even 25 years ago. "History is no longer two-dimensional; the historical stage is now three-dimensional," said Weiss.
-end-
Weiss' previous research defined the 2200 B.C.E. global megadrought that generated societal collapse from the Mediterranean to China.

In addition to Weiss, researchers from California State University-Dominguez Hills, Xi'an Jiaotong University, University of Minnesota, University of Colorado-Boulder, University of Illinois-Chicago, University of Ankara, and University of Southern California contributed to the study.

Yale University

Related Climate Articles:

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.
Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.
Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.
Inclusion of a crop model in a climate model to promote climate modeling
A new crop-climate model provides a good tool to investigate the relationship between crop development and climate change for global change studies.
Natural climate solutions are not enough
To stabilize the Earth's climate for people and ecosystems, it is imperative to ramp up natural climate solutions and, at the same time, accelerate mitigation efforts across the energy and industrial sectors, according to a new policy perspective published today in Science.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate News and Climate Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.