Nav: Home

ASU study shows some aquatic plants depend on the landscape for photosynthesis

November 14, 2019

All plants need carbon dioxide, or CO2 to live. They extract it from the air and use it during the photosynthesis process to feed themselves.

But what happens to aquatic plants? How do they get carbon dioxide?

Some have partial terrestrial forms, such as floating leaves or above water growth, which allows them to use carbon dioxide from the atmosphere. But for plants that live completely submerged in water, CO2 is limited and many of these plants have developed a mechanism to tap into other carbon sources. In this case, they extract it from bicarbonate -- a naturally occurring mineral that comes from the weathering of soils and rocks and the runoff reaches the plants.

In a paper published today in Science, researchers from Arizona State University School of Life Sciences found that not only are freshwater aquatic plants affected by climate, they are also shaped by the surrounding landscape.

"In this study, we're able to show that yes, when in an environment where carbon dioxide is limited, then plants use strategies to extract carbon from bicarbonate," said Lars Iversen, principal investigator for the study and a research fellow at the School of Life Sciences. "We see this in local rivers and lakes, but we also see this across the globe. We have identified patterns across ecoregions and there's a direct link between the availability of catchment bicarbonate and the ability of aquatic plants to extract carbon from that bicarbonate."

The study, which focused specifically on aquatic plants that live completely submerged, also showed that when plants have easier access to carbon dioxide, they will use that as their carbon source, even if bicarbonate is available.

"One of the main points of this study is that aquatic plants are different. We cannot use our extensive knowledge about terrestrial plants in the same way as aquatic plants," said Iversen, a researcher in Assistant Professor Ben Blonder's ecology lab. "This is really important because on a global scale, at least one-third of the human population is very closely linked to freshwater systems. So things like deltas, drinking water, and fishing grounds are critical to human survival. If we are to understand how these systems will persist and change within the next 100 years, then we really need to know how some of the main components and structures in freshwater systems are working."

Environmental changes caused by human activity, such as deforestation, land cultivation, and the use of fertilizers, are causing large increases in bicarbonate concentrations in many freshwater bodies around the world. Iversen said the insight from this study will help researchers evaluate how ecosystem functions change if concentrations of bicarbonate increase.
-end-


Arizona State University

Related Climate Articles:

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.
Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.
Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.
Inclusion of a crop model in a climate model to promote climate modeling
A new crop-climate model provides a good tool to investigate the relationship between crop development and climate change for global change studies.
Natural climate solutions are not enough
To stabilize the Earth's climate for people and ecosystems, it is imperative to ramp up natural climate solutions and, at the same time, accelerate mitigation efforts across the energy and industrial sectors, according to a new policy perspective published today in Science.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate News and Climate Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.