Spin doctors: Astrophysicists find when galaxies rotate, size matters

November 14, 2019

The direction in which a galaxy spins depends on its mass, researchers have found.

A team of astrophysicists analysed 1418 galaxies and found that small ones are likely to spin on a different axis to large ones. The rotation was measured in relation to each galaxy's closest "cosmic filament" - the largest structures in the universe.

Filaments are massive thread-like formations, comprising huge amounts of matter - including galaxies, gas and, modelling implies, dark matter. They can be 500 million light years long but just 20 million light years wide. At their largest scale, the filaments divide the universe into a vast gravitationally linked lattice interspersed with enormous dark matter voids.

"It's worth noticing that the spine of cosmic filaments is pretty much the highway of galactic migration, with many galaxies encountering and merging along the way," says lead researcher Charlotte Welker, an ASTRO 3D researcher working initially at the International Centre for Radio Astronomy Research (ICRAR) and now at McMaster University in Canada.

ASTRO 3D is the ARC Centre of Excellence in All Sky Astrophysics, based in Australia.

The filaments are why the universe looks a little like a honeycomb, or a cosmic Aero chocolate bar.

Using data gathered by an instrument called the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) at Australia's Anglo-Australian Telescope (AAT), Dr Welker, second author and ASTRO 3D principal investigator Professor Joss Bland-Hawthorn from the University of Sydney, and colleagues from Australia, the US, France and Korea studied each of the target galaxies and measured its spin in relation to its nearest filament.

They found that smaller ones tended to rotate in direct alignment to the filaments, while larger ones turned at right angles. The alignment changes from the first to the second as galaxies, drawn by gravity towards the spine of a filament, collide and merge with others, thus gaining mass.

It is a phenomenon that Dr Welker likens to roller-skating in the company of a friend.

"The flip can be sudden," she says. "Merging with another galaxy can be all it takes.

"Imagine you are skating after a friend and catching up. If you grab your friend's hand while you are still moving faster, you will both start rotating on a vertical axis - a spin perpendicular to your horizontal path.

"However, if a small cat - a much lighter bit of matter - runs after your friend and jumps on her she probably won't start spinning. It would take a lot of cats leaping on her at once to change her rotation."

Co-author Scott Croom from the University of Sydney, also an ASTRO 3D principal investigator, says the result offers insight into the deep structure of the Universe.

"Virtually all galaxies rotate, and this rotation is fundamental to how galaxies form," he says.

"For example, most galaxies are in flat rotating disks, like our Milky Way. Our result is helping us to understand how that galactic rotation builds up across cosmic time."

He adds that a new instrument, called Hector, set to be installed at the Anglo Australian Telescope next year, will enable a significant expansion of research in the field.

"Hector will be able to carry out surveys five times larger than SAMI," he says. "With this we will be able to dig into the details of this spin alignment to better understand the physics behind it."

The Milky Way, by the way, has a spin well aligned with its nearest cosmic filament, but belongs to a class of intermediate size galaxies that, over all, show no clear tendency towards parallel or perpendicular spins.

"It's like saying that there is no preference for tea or coffee among a group of people," says Dr Welker. "Individuals may still prefer either tea or coffee, but overall there is no general tendency towards coffee in the group."
The research has early access availability in the journal Monthly Notices of the Royal Astronomical Society (MNRS), and is also available in full on the preprint site arxiv.

ASTRO3D is the ARC Centre of Excellence for Astrophysics in 3 Dimensions.

ARC Centre of Excellence for All Sky Astrophysics in 3D (ASTRO 3D)

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.