Supercomputing On Demand

November 14, 1997

A prototype for future "computational grids," which will provide supercomputing power on demand, just as a power grid provides electricity, will be demonstrated in San Jose this coming week by researchers from the University of Southern California's Information Sciences Institute (ISI) and the Argonne National Laboratory.

The testbed grid at the SC97 conference in San Jose's McEnery Convention Center Nov. 15-21 will harness approximately 3,000 data processors in the U.S. and Europe. GUSTO (Globus Ubiquitous Supercomputing Testbed) is the latest development of the Globus system, an integrated set of software components for next-generation high-performance Internet computing.

"By providing pervasive access to supercomputing capabilities, computational grids will change the way we think about and use high-end computing," said Ian Foster of Argonne, who co-leads the Globus project with Carl Kesselman of ISI. "We're excited to take this step toward establishing a permanent computational grid facility."

"From previous experiments, we know that both the technical and organizational obstacles to creating such integrated grids are tremendous," Dr. Kesselman said. "However, the cooperation that we have received from all participants has been amazing. People are clearly ready for this next step towards widespread collaborative supercomputing."

Drs. Foster and Kesselman believe that future computational grids will place the most advanced supercomputers, data archives, virtual-reality displays, and scientific instruments at the fingertips of the nation's scientists and engineers -- regardless of where tools or people are located -- and hence enable new problem solving techniques, such as distributed supercomputing, remote visualization, and tele- immersion.

At SC97, 10 groups will use Globus software and GUSTO resources for a range of distributed supercomputing applications, including: One novel resource incorporated in the GUSTO grid is a large pool of workstations managed by Condor, a system developed at the University of Wisconsin by Prof. Miron Livny and his colleagues to support high-throughput computing. "We're excited to be coupling Condor with Globus," said Livny. "We believe that future grids will need to support both high- performance and high-throughput computing, and this seems to be the way to do it."

Among the events planned for the SC97 conference is an attempt at a world-record SF-Express run. The goal is to harness a sizable fraction of GUSTO resources to achieve a simulation involving 60,000 entities.

The GUSTO grid was developed in collaboration with the National Computational Science Alliance (Alliance) and the National Partnership for Advanced Computational Infrastructure (NPACI), both recipients of NSF Partnerships for Advanced Computational Infrastructure awards; as well as with staff at DOE and NASA laboratories and other research centers around the world.

The Alliance, anchored by the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, helped develop essential software and incorporated its large SGI/Cray Origin2000 and Convex supercomputers into the grid. NPACI, anchored by the San Diego Supercomputer Center (SDSC) at the University of California, San Diego, is also supporting the effort and providing access to computers.

Other sites participating in GUSTO include the California Institute of Technology, the Paralleldatorcentrum at Kungliga Tekniska Hogskolan in Sweden, Indiana University, the National Energy Research Scientific Computing Center, Los Alamos National Laboratory, NASA's Ames Research Center, the Rechenzentrum Garching der Max-Planck-Gesellschaft Garching in Germany, the Texas Center for Computational and Information Sciences at the University of Houston, the Maui High Performance Computing Center, and the Condor Project at the University of Wisconsin. GUSTO resources are connected by a variety of high- speed networks, including ESnet, vBNS, and international networks accessed via STAR TAP (

Foster and Kesselman previously collaborated on I-SOFT, the middleware used for the I-WAY experiment at the Supercomputing '95 conference.

Globus research and development is supported by DARPA, DOE, and NSF, and by an equipment grant from Sun Microsystems.


EDITOR: For more information concerning Globus, contact Ian Foster at Argonne National Laboratory at, (630) 252-4619, or Carl Kesselman at ISI at, (310) 822-1511, or visit A complete program of SC97 can be found at

University of Southern California

Related Supercomputers Articles from Brightsurf:

Blue whirl flame structure revealed with supercomputers
Main structure and flow structure of 'blue whirl' flame revealed through supercomputer simulations.

Hungry galaxies grow fat on the flesh of their neighbours
Galaxies grow large by eating their smaller neighbours, new research reveals.

Supercomputers and Archimedes' law enable calculating nanobubble diffusion in nuclear fuel
Researchers from the Moscow Institute of Physics and Technology have proposed a method that speeds up the calculation of nanobubble diffusion in solid materials.

Dissecting the mechanism of protein unfolding by SDS
A new study by the Aksimentiev group at the University of Illinois has used molecular dynamics simulations to understand how sodium dodecyl sulfate, a commonly used detergent in labs, induces protein folding.

Supercomputers unlock reproductive mysteries of viruses and life
Supercomputer simulations support a new mechanism for the budding off of viruses like the coronavirus.

Supercomputers drive ion transport research
Kinetics of solute transport through nanoporous membranes captured through supercomputer simulations.

Supercomputers use graphics processors to solve longstanding turbulence question
Advanced simulations have solved a problem in turbulent fluid flow that could lead to more efficient turbines and engines.

Novel software to balance data processing load in supercomputers to be presented
The team will present its research in Rio de Janeiro, Brazil, at the 33rd International Parallel and Distributed Processing Symposium on May 22, 2019.

Supercomputers help supercharge protein assembly
Using proteins derived from jellyfish, scientists assembled a complex sixteen protein structure composed of two stacked octamers by supercharging alone.

Physicists use supercomputers to solve 50-year-old beta decay puzzle
Beta decay plays an indispensable role in the universe. And for 50 years it has held onto a secret that puzzled nuclear physicists.

Read More: Supercomputers News and Supercomputers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to